Cincom

SUPRA SERVER PDM

RDM Administration Guide
(OS/390 & VSE)

P26-8220-64

SUPRA® Server PDM RDM Administration Guide (OS/390 & VSE)

Publication Number P26-8220-64

0 1985-1989, 1991-1994, 1997, 1998, 2000, 2002 Cincom Systems, Inc.
All rights reserved

This document contains unpublished, confidential, and proprietary information of Cincom. No
disclosure or use of any portion of the contents of these materials may be made without the express
written consent of Cincom.

The following are trademarks, registered trademarks, or service marks of Cincom Systems, Inc.:

AD/Advantage® iD CinDoc™ MANTIS®
C+A-RE™ iD CinDoc Web™ Socrates®
CINCOM® o iD Consulting™ Socrates® XML
Cincom Encompass iD Correspondence™ SPECTRA™
Cincom Smalitalk™ iD Correspondence Express™ SUPRA®
Cincom SupportWeb iD Environment™ SUPRA® Server
CINCOM SYSTEMS iD Solutions™ Visual Smalltalk®

i intelligent Document Solutions™ VisualWorks®
gOOoi™ Intermax™

UniSQL™ is a trademark of UniSQL, Inc.
ObjectStudio™ is a registered trademark of CinMark Systems, Inc.

All other trademarks are trademarks or registered trademarks of their respective companies.

Cincom Systems, Inc.

55 Merchant Street
Cincinnati, Ohio 45246-3732
U.S.A.

PHONE: (513) 612-2300
FAX: (513) 612-2000
WORLD WIDE WEB: http://www.cincom.com

Attention:

Some Cincom products, programs, or services referred to in this publication may not be available in all
countries in which Cincom does business. Additionally, some Cincom products, programs, or services
may not be available for all operating systems or all product releases. Contact your Cincom
representative to be certain the items are available to you.

www.cincom.com

Release information for this manual

The SUPRA Server PDM RDM Administration Guide (OS/390 & VSE),
P26-8220-64, is dated January 15, 2002. This document supports
Release 2.7 of SUPRA Server PDM in IBM mainframe environments.

We welcome your comments

We encourage critiques concerning the technical content and
organization of this manual. Please take the survey provided with the
online documentation at your convenience.

Cincom Technical Support for SUPRA Server PDM

FAX: (513) 612-2000
Attn: SUPRA Server Support

E-mail: helpna@cincom.com

Phone: 1-800-727-3525

Mail: Cincom Systems, Inc.
Attn: SUPRA Server Support
55 Merchant Street
Cincinnati, OH 45246-3732
U.S.A.

mailto:helpna@cincom.com

Contents

About this book Xi
USING thiS OCUMIEBNL.......eiiiiiiiiie ettt e e aneeee s Xi
DocumeNnt OrganiZationoooiiiueiieiie e e e e e e e e e Xi

ReVvisions t0 thiS ManUalcciiiiiiii e Xii

(070] 01V T o 1110] o 1S TP PUTTR PP Xiii

SUPRA Server doCUumMENtation SEIIESiiiiiiiieiiiiiee et XVi
Overview of the SUPRA Relational Data Manager 19
The USEr'S PEISPECHIVE—VIEWScctiiiiiiiiiiiiiiiea e e e ettt ee e e e e sttt ea e e e e e s anbbereeaaaeaaanes 21
ACCESSING VIEWS ...eeeietiiie ittt ettt ettt ettt e e et e ettt e e et e e st e e e nbbe e e e annes 21

SUDSELHING VIBWS ...ttt e e e e eeee e s 22

The DBAs perspective—three-schema architeCture............oocccvvvvevee i 23
INtErN@l SCREMA. ... 23

Conceptual SChema—bhase VIEWSeeiiiiiiiiiiiiiie e 24

External schema—derived VIEBWS ..o 25

RDIM SECUIILY ..ttt ettt ettt et e e e et e e et e e e e b e e e enees 26

The DBA function in the RDIMeiiiiiiiiiie et 27
SYSEM TEOUITEMIEINTSiteiieiiiiit ettt e et e et e e e et e e e st bt e e e enbaeeeeanees 28

(D[=Tox (o] VTP UT R UUUUPPPIRRP 28

Physical Data MANAGgETueeiiiiiie it 28

[F= 100 V= T PR OTPPPPR 28

RDM Administration Guide \Y

Contents

Accessing user data 29
Overview of base views and derived VIEWSceuiiiiiiiiiiiiiie e 29
DeSigNIiNg dENVEA VIBWScooiiiiiiiiiiee ettt e et a e e e e et ee e e e e e e e e ennnes 31
HOW the RDM CONSIIUCES FOWS ...coiiiiiieeiiiieee sttt e ettt ettt e st e e e snaeeeeane 32
Providing KEYEO GCCESScceiiiiiiiiiiiii ettt e e e e e e 33

UNIQUE KBYS ittt ettt ettt e e e e et e e e e e e e s e st ae e e e e e e snnnnnneees 35
NONUNIQUE KBYS ...ttt e e 38
CONSTANT KBYS 1.evtiieei ittt e ee ettt e e e e st e e e e e s e st e e e e e e s s s nnnbaneeeeaeeenannnes 39
ReqUIred COIUMNSuiiiiiiiii e 39
Using domains, null values, and default values for physical fieldsccccccveeeenns 40
Validation OPLIONScoiiiiiiiiie et e e 41
NUITVEIUES .ottt e e e 45
DefaUlt VAIUES ... 47

Modifying user data 49

Changing the database CONENTScuvieiiiiiiiiiiiii e e e 49
Inserting information to the databaseccccooiiiiiiiii e, 51
Updating information on the database..........ccccccccevieiiiiiiie e 52
Deleting information from the database............ccccciiiiii 53
Allowing shared cOluMN VAIUEScoouiiiiiiiee e 54

Retrieving data With the RDIMcooiiiiii it 55
Database PENELIAtiONcoiccuiriiiieee e r e e s e e e e et rr e e e e e s 56
Databhase SWEEPeiiiiiieeeie ittt e e e 57
T o 1211V SRR 57
Navigational constraints and boundaries...........cccouiiiiiiiiiiniiiiiie e, 57

STALUS INAICALOIS ..ttt et e e e e s enneeeas 58
Function status iNICAtOISuveiiiieiiiieeee e 59
Column Status INAICALOISeiiiiiiii e 60
Validity Status INAICALONSeeiiiiiiiiiiiiiii e 62

Defining and using derived views 63

DefiNiNg EIIVEA VIBWSueiiiiiiiie ettt e et e e staeeeeanes 64
Column defiNItIONooiieie e 64
ACCESS EFINITION ... eeeiiiiiiiii e 72

Examples of derived view definitionS...........ccuuviiiiiiiiiie e 76
BaSE TEIAtIONSeeeiiiii et 76
BASE VIBWS ... eeiiieeeiit ettt ettt e e e et e e e e e e e e e e e nnaaae s 78
DEIMVEA VIBWS ...ttt ettt et e et e e 80

Processing deriVEd VIEWSooueiiiiiiiie ettt e e e e et e e e e e e 85
Processing the GET COMMANGcccoeiiiiiiiiiiiee e e e 85
Processing the INSERT command.............ccooooiiiiiiiiiiiiieeiiiieee e 86

vi P26-8220-64

Maintaining referential integrity

Integrity rules and checking..........cccvvvviie e
Foreign key value INtegrity.........cooui i
INSErtioN INTEGIILY ..eee i e e
UPdAte INTEGIILY ...eeeeeieeeiiiiiiee e
(1 I o] o o =11 o [SR
Deletion INTEGIILYccui e
Referential integrity eXamples..........cccuuiviieee i

Maintaining the RDM

Defining and testing views with DBAIDoccciiiiieiiiniiiiieecee e
Signing on to DBAID and RDMccccvuiiiiieeeii e
Defining Dase VIEWSuuiiiiiiiiiiiiiiiiee e
Defining @ derived VIEWcceeiiiiiiiiiiiie e esineee e
REtreVINg rECOITS ...t
INSErtiNG rECONASvveiiiieeie e e e e
UPAALING 8 FOW ..ttt e e e e eeaaeeas
Modifying a view definitionccccooccviiieeee e

Maintaining current programs and VIEWScccuveeieeerniiiiiiieeeeee e
Checking currentness of program.........ccccceeeeeeeiveeeeeeeeesseccivnnnnns
Checking currentness of view bindings............ccccvveviiieniiiiinen.

Optimizing PErfOrMANCEviiiiiieee e e e e
Global VIEW SUPPOIT....cciiieiiiiiiiiieiie e
ViIEW DINAING ..tvvvieiie et e e e e en e e e e e

Installing the RDM resident module in shared memory

Gathering and interpreting StatiStiCS........ccvvvviveeeiiiiiie e
Gathering statistics with DBAIDccvviiiiieiiiiiiieeee
Gathering statistics in an application programccccuvee...
Interpreting RDM StatiStiCSccuvvvveeeieeiiiiiiiiiie e
Statistics EXAMPIE ...vvveeeeeee i

Relating VIEWS 10 USEI'Suuiiiiiieaiiiiiiiiie et

RECOVENNG GALA ...vvvieeeeieiiiiiiee e e e e s e e e e e e

RDM Administration Guide

Contents

Vil

Contents

Managing views with the DBAID commands 133
[aLigeTe [TeaiToTa IR (o T B =Y AN | I L 133
SYSEEM COMMEANTUS ...ttt e e e et e e e e e e e e aaa e an 136

Editing COMMANASvviiiiiiie e e e e r e e e e e nnnees 136

RDML COMMANAScceeeiiieie et e et e et e e et e e e e e e e saaaeesees 137

BUIilt-In VIEW COMMANTSccoiiiieiiiiee et e e e e e eeaaae 138
StatiSTIC COMMEANTSoeeeiieiee e e e e e e e e e e s e e e e aaans 138

oo 1410 1= T T I 139
BIND COMMEANT ...ttt e e et e e e e e e s e e e e s e b e s eeba s e ssaaneeesees 140
BYE COMMANG......ciiiiiiiiiei e e e e e e e et e e s e e e s e e e aab s e e e s eseeabaa e aeeesensrnes 142
BY-LEVEL COMMANG......uuiiiiiiiiiiiiie ittt e e e e e e et e e s et e e e e et s e e s eaaeeseees 143
CAUTIOUS COMMANG ...ttt e e e e e s e et be e e e e e s e eaaab s e e s e e e enaaan e as 145
COLUMN-DEFN COMMANGuiiiiiiiii ettt e e e e s e e s e e e aaaas 146
COLUMN-TEXT COMMANTG....cuuuuiiiiiiiiiiiiieieeeeee et s e e e e e s eeetae e s e s e s essaaa e s e e s eeseenaanees 148
(O(@ 1Y/ 11V, 1 I oTo] 1 Y0 4 =1 [0 H 149
(O@] =8 oT0 1012 -1 0 [0 150
DEFINE COMMANG.....uiiiiiiiiii ettt e et e e e e st e e e et s e s saaaeeesees 152
[I o0 Y 4= o o 153
(D] =\ A oT0] 1 0] 0 F=1 o (o [N 155
L= o0 T2 0 1 = (o 1R 156
ERASE COMMANG...... ittt e e e e e e e e e e e eeseba e e s saaaeeeeees 157
FIELD-DEFN COMMANG....uuiiiiiiiiiieiiie e eeeeeeeee e e ee e et s s e e s e e eaab s e e e s s s eeabaaaeseeeseesenes 158
FORGET COMMANG.....iiiiiiiiiiiii et e e e e e e e e e e s et s eesaaaeeseeas 160
[= o701 1 ¢ = o (o 1 161
(CT0 o701 11011 1= 1 g o [164
1IN ST = = B oT0 1010 = (o R 168
[N = oT0] 11010 1 F= T (o [T 172
Line-NUMDBEIr COMMEANG......ciiiiiieeieee e e e e e e e e e e e s e e aeabe e e e e eeseesaees 173
LINESIZE COMMANG... oottt e e e e et e e e e e e s et s eesaaaeeseees 175
(IS I oT0] 1412 = [[176
LY AN S o0] 1 1 1.4 =1 T 178
LY A €S T oT01 0 0] g =V (o 1N 179
(@1 =d =\ I To] 1210 4 F= o [0 F T 180
PAGESIZE COMMEANG ..uuuniiiiiiiiieiiiee et e e e e e e e e s e e et e e e e s e s e aabb e e e e eeseeeranes 182
PERMIT COMMEANT ...uniiiiiieiee ettt e e e e e st e e s et e e e seba s e e s aaaeeseean 183
PRINT-STATS COMMANGccoiiiiiiiiiei e eeeeeie e e e et s e e e e e s s eeb e e e e e e s e eeasbaaaeeeeseenns 184
PUBLIC-DENY COMMANG.....ccuuiiiiiiiiiiiee ettt e e st e e et s e s eaaaeeeaees 185
PUBLIC-PERMIT COMMANGcotuuiiiieiiiieiiiiee et e s e e e e et s e e s e e e et s e e e e e s eenranes 186
PUBLIC-VIEWS COMMANTuuiiiiiiiiiiiie et e et e et e e et e e et e e s eaaeesaean 187
RELEASE COMMANG ..uviuniiiiiiiieiiee ettt s e s e e e s e e e e e e e s s s eeabaaeeeeesseeennes 188
REMOVE COMMEANT .. .coviiiiieii ettt e e et e e et e e s e e s et s e s saaaeeeaees 189
RENUMBER COMMANG ...uiiiiiiieiiiiee et e et s e s e e e e ee e s e e e s s e e aaabn s e e eeeseensnnes 191
RESET COMMEANGuiiiiiiiiiie et e e et e e e e e e e e e e e s e s e eaa e e e saaaeesens 192
Sy A\ V4 oo 1 212 1= T T 193
SHOW-NAVIGATION COMMANcoooiuitiiieiiiiiet et e e e e e e e s 195
] (€1) R @ = roTo] o] ¢ =Y 2 (o 15 197

viii P26-8220-64

Contents

5] (€)@ 1\ I o] 411 7= U T 198
STATS COMMEANT....ceetiiiiei et e et e e et e e e aa e e s et eeesaba e esesaeesstsseeresnaees 199
STATS-OFF COMMEANG ...cvvviiiiiiiiieie et e e e e e e e s e e e s e s eaab s e s e e sseesbanaeaeaerenes 200
STATS-ON COMMEANTeeeeiiiiiiee et e e e et e e e s et eeesat s e s esaeeesabaaeeeesaneee 201
S U] i o 1 T2 1= T T 202
UNDEFINE COMMEANG ...ttt e et e e et e st e e e et e e e e e s e e s et e e s aaaas 203
UPDATE COMMANG.....ciiiiiiiiiiiee ettt e e e e e e e e e e s e e e e e e e aaab e e e e e e s e enbaaaneeeess 204
USER-LIST COMMEANG ..ottt e et e e et e e e e et e e e s e e e e ebaaas 207
VIEW-DEFN COMMANG......cciiiiiiiieiieiiiieee et s e e e e e e e e e s e et s e e e e e e eaaranes 208
VIEW'S COMIMEANT.....iiiiiitiiiiiie ettt e et e e e e e e e e e e e e e e e s e e s eba s eseaaaseesanas 209
VIEWS-FOR-USER COMMANG ...uuuiiiiiiiiiiiiie et s e e s e e e s seavaae s e e e e e e ennaanns 210
Using the RDM reports 211
(D] YN (=T oTo] ¢ PO TP PP PP PPUUPPPPPUPPPPPPPPPINE 213
Programmer’'s FEPOITcoiieeeiie et 215
(= Lo I UL g 1] oo AT PPRRR PP 218
TagT o= Tod o] ol T Ta o [= N £=] o 1o | PSP 220
Files Impacting VIEWS FEPOIMccciiiiiiiiiiiie et 220

Views impacting VIEWS FEPOMuuuurereeeeeiiiiiieeeeeesesieireer e e e e s ennnsneeeeeeananns 222

Views impacting programs FEPOIMcoiiiueieiiieae e e e 223

Views used by Programs FEPOMuueiieieeeieiieiieieeeeesseiiieereeeeessnsrnreereeesssnnrrnereeees 224
Configuring the RDM for your environment 225
Overview of configuring the RDM for your environmentccccooeiuvieeieeeeeniiieinen. 225
Configuring the RDM XA StOrAQE......ccuvuiieieeeeeeiiiiieeeee e e s e siteree e e e e e s e er e e e e e e snnanneees 228
Interaction of OPtIONS PArAMELEIS.ccuiiiiiiiiiiiiii e 229
Environment description parametersooocuvviieeeeeeiisciieiiee e esieeee e 230

The CONNECE/SINON PIrOCESSuueviiiiieieee ittt e e 231

OPER CONNECT ParameEterS........uuueuuuuuerererernrnrnrnennnnnnnrnrnnnnnsnnnnnnnnnnnnnnnnnne 232

RDML PrOCESSING ... ceteiiitttteee e e e ettt e e ettt e e e e e e et e e e e e e e e nnnnbeeeaaaeeas 233

PDM thread ProCeSSING......uuuriieeeiiiiiiiieereeesssiiieereeeeessssnrerereeeeesesnsnennereeees 235

CICS PrOCESSING ..eeeieeeiiiiiiieeie e e ettt e et e e e e e e e e e e e e e e e e annanneeeaeaas 236
Customizing the RDM processing with user exits 237
Overview of customizing the RDM processing with user exitS..........ccccccvveeeevvcvvnnnnn. 237
USING dat@DASE EXItS ...cei ittt e e e e et e e e e e e nenee e 240
Using environment-independent database exitS.........cccccevvvvveeeeviiiiiieneenenn, 242

Using environment-dependent database exitS........cccccoviveiieiieeiiiiiiiiieeeeenn. 245

USING RDML EXIES 1.vviieeiiiiiiiiieiee e e s sesitie e e e e e s s st e e e e e e e st e e e e e e e s anntaaeeeeeeeessnnnnneees 249
Using the before-function exit (CSVXBFOR)cccoeiiiiiiiiiiiiieeiiiiiieeeeeeenn 250

Using the after-function exit (CSVXAFTR)....ccccviiiiiee e eeiieere e 252

Using the TASKID exXit (CSVXTSID)uuuiiiiiiiiee ittt 254

USING ValIdAtioN ©XITS.....cciiiiiiiieiiie e et sr e e e e e s s s e e e e e e e s e e e e e e e s e nnnnenes 256

RDM Administration Guide ix

Contents

Setting the online RDM options with macros 261
Overview of setting the online RDM options with macros............cccccvvvveeeeiviciviennnn. 261
Index 273

X P26-8220-64

About this book

Using this document

This manual is intended for the DBA, the person responsible for
designing and modifying the logical and physical structure of your
database.

Document organization
The information in this manual is organized as follows:

Chapter 1—Overview of the SUPRA Relational Data Manager
Provides an overview of the RDM.

Chapter 2—Accessing user data
Explains how to design derived views, how the RDM constructs a row
of data, and how to specify keys, null values, defaults, and validation
options for a view.

Chapter 3—Modifying user data
Explains how to modify user data.

Chapter 4—Defining and using derived views
Explains how to define and use derived views.

Chapter 5—Maintaining referential integrity
Explains referential integrity and how to maintain it.

Chapter 6—Maintaining the RDM
Describes the RDM maintenance functions. It describes how to
create and test views, how to create and maintain the relationship of
views with applications and users, how to analyze and optimize the
RDM performance, and how to recover data.

Chapter 7—Managing views with the DBAID commands
Lists and describes the DBAID utility commands for managing views.

Chapter 8—Using the RDM reports
Explains how to use the RDM reports.

RDM Administration Guide Xi

About this book

Chapter 9—Configuring the RDM for your environment
Tells how to find the information to configure the RDM for your
operating environment. It also summarizes the new RDM features.

Appendix A—Customizing the RDM processing with user exits
Describes the RDM user exits for customizing RDM processing.

Appendix B—Setting the online RDM options with macros
Describes the RDM macro C$VOOPTM for setting user options.

Index

Revisions to this manual
The following changes have been made for this release:

¢ The illustration under “Using the after-function exit (CSVXAFTR)” on
page 252 has been corrected to show 5 parameters.

¢ The table showing addressing modes for RDM user exit programs on
page 240 has been corrected to show the addressing modes for
modules CSVXCFNC and CSVXCSTA are the same as the
addressing mode for the invoking user application.

¢ The NORMAL product is no longer distributed. If you use NORMAL,

retain your files and previous documentation. References to
NORMAL in this document have been deleted.

Xii P26-8220-64

About this book

Conventions

The following table describes the conventions used in this document

series:
Convention |Description Example
Constant wi dth Represents screen images and PUT * custoner. dat" ,
type GET 'm |l er\custoner. dat
segments of code. PUT ' \ DEV\ RMTO'
Slashed b () Indicates a space (blank). BEGNDDDDSERI AL
The example indicates that four
spaces appear between the
keywords.
Brackets [] Indicate optional selection of

parameters. (Do not attempt to
enter brackets or to stack
parameters.) Brackets indicate one
of the following situations:

A single item enclosed by brackets [VHERE sear ch-condi ti on]
indicates that the item is optional
and can be omitted.

The example indicates that you can
optionally enter a WHERE clause.

Stacked items enclosed by brackets QWAIT) O
re ional al i o

present optional alternatives, one NOWAIT)(
of which can be selected.

The example indicates that you can
optionally enter either WAIT or
NOWAIT. (WAIT is underlined to
signify that it is the default.)

RDM Administration Guide Xiii

About this book

|C0nvention

|Description

Example

Braces { }

(For new
information)

Ellipsis points...

Xiv

Indicate selection of parameters.
(Do not attempt to enter braces or to
stack parameters.) Braces
surrounding stacked items
represent alternatives, one of which
you must select.

The example indicates that you
must enter ON or OFF when using
the MONITOR statement.

Underlining also indicates an
allowable abbreviation or the
shortest truncation allowed.

The example indicates that you can
enter either STAT or STATISTICS.

Technical changes and new
information pertinent to this release
are marked by underlining.

Indicate that the preceding item can
be repeated.

The example indicates that you can
enter multiple host variables and
associated indicator variables.

N
MONITOR £ E
EPFFD

STATI STI CS

The minimum record length is
21 for primary datasets and
41 for related datasets.

I NTO : host-variable [:ind-

variable],...

P26-8220-64

About this book

Convention

Description

Example

UPPERCASE
lowercase

Italics

Punctuation
marks

SMALL CAPS

2]
m

In most operating environments,
keywords are not case-sensitive,
and they are represented in
uppercase. You can enter them in
either uppercase or lowercase.

Indicate variables you replace with a
value, a column name, a file name,
and so on.

The example indicates that you
must substitute the name of a table.

Indicate required syntax that you
must code exactly as presented.

() parentheses
period
comma
colon
single quotation marks

Represent a keystroke. Multiple
keystrokes are hyphenated.

Information specific to a certain
operating system is flagged by a
symbol in a shadowed box (
indicating which operating system is
being discussed. Skip any
information that does not pertain to
your environment.

CCPY MY_DATA. SEQ
HOLD_DATA. SEQ

FROM t abl e- nane

(user-id, password, db-nane)

I NFI LE ' Cust. Meno' CONTROL
LEN4

ALT-TAB

See the SUPRA Server
procedure library
member TISSRDM for
a list of RDM
procedures.

See the SUPRA Server
RDM sublibrary
member TXJ$INDX for
a list of JCL.

RDM Administration Guide

XV

About this book

SUPRA Server documentation series

XVi

SUPRA Server is the advanced relational database management system
for high-volume, update-oriented production processing. A number of
tools are available with SUPRA Server including Directory Maintenance,
DBA utilities, DBAID, SPECTRA, and MANTIS. The following list shows
the manuals and tools used to fulfill the data management and retrieval
requirements for various tasks. Some of these tools are optional.
Therefore, you may not have all the manuals listed. For a brief synopsis
of each manual, refer to the SUPRA Server PDM Digest (OS/390 &
VSE), P26-9062.

Overview

¢ SUPRA Server PDM Digest (OS/390 & VSE), P26-9062

Getting started

¢ SUPRA Server PDM Migration Guide (0OS/390 & VSE), P26-0550*

¢ SUPRA Server PDM CICS Connector Systems Programming Guide
(OS/390 & VSE), P26-7452

General use
¢ SUPRA Server PDM Glossary, P26-0675

¢ SUPRA Server PDM Messages and Codes Reference Manual
(RDM/PDM Support for 0S/390 & VSE), P26-0126

P26-8220-64

About this book

Database administration tasks

¢

RDM Administration Guide

SUPRA Server PDM and Directory Administration Guide (0S/390 &
VSE), P26-2250

SUPRA Server PDM Directory Online User’s Guide (O0S/390 & VSE),
P26-1260

SUPRA Server PDM Directory Batch User's Guide (0S/390 & VSE),
P26-1261

SUPRA Server PDM DBA Utilities User’s Guide (OS/390 & VSE),
P26-6260

SUPRA Server PDM Logging and Recovery (OS/390 & VSE),
P26-2223

SUPRA Server PDM Tuning Guide (OS/390 & VSE), P26-0225

SUPRA Server PDM RDM Administration Guide (0S/390 & VSE),
P26-8220

SUPRA Server PDM RDM PDM Support Supplement (OS/390 &
VSE), P26-8221

SUPRA Server PDM RDM VSAM Support Supplement (OS/390 &
VSE), P26-8222

SUPRA Server PDM Migration Guide (0OS/390 & VSE), P26-0550*

SUPRA Server PDM Windows Client Support User’s Guide,
P26-7500*

SPECTRA Administrator's Guide, P26-9220

XVil

About this book

Xviii

Application programming tasks

¢

SUPRA Server PDM DML Programming Guide (OS/390 & VSE),
P26-4340

SUPRA Server PDM RDM COBOL Programming Guide (OS/390 &
VSE), P26-8330

SUPRA Server PDM RDM PL/1 Programming Guide (OS/390 &
VSE), P26-8331

SUPRA Server PDM Migration Guide (0S/390 & VSE), P26-0550*

SUPRA Server PDM Windows Client Support User’s Guide,
P26-7500*

Report tasks

¢ SPECTRA User's Guide, P26-9561
NOTE Manuals marked with an asterisk (*) are listed more than once because
5 you use them for multiple tasks.
NOTE Educational material is available from your regional Cincom education

department.

P26-8220-64

1

Overview of the SUPRA Relational
Data M anager

The SUPRA Relational Data Manager (RDM) provides a relational view
of data for end users and application programs. The RDM insulates end
users and application programs from the physical structure of the
databases and from changes in that structure.

The RDM does the following:

¢

RDM Administration Guide

Isolates application programmers and end users from the physical
database implementation. Allows the DBA to restructure the
database without requiring programs to be rewritten or recompiled.
Provides programmers with a simplified Relational Data Manipulation
Language (RDML) for retrieving and modifying the database
contents. Application programs with RDML tend to be smaller and
take less time to code.

Allows the DBA to control database security by specifying the levels
of access allowed to specified users through specified views.

Enforces database integrity.

Maintains data in a tabular (relational) structure.
Supports relational operators.

Processes data as relations.

Supports multiple physical file structures.

19

Chapter 1 Overview of the SUPRA Relational Data Manager

20

Supports null values.
Performs automatic data validation.

Supports default values for physical fields. People in your
organization would have different perspectives on SUPRA Server
relational data management depending on their job function:

The DBA uses DBAID or Directory Maintenance to create base views
(views that access files). The DBA also uses DBAID or Directory
Maintenance to create derived views (views that access base views
or other derived views).

The application programmer uses DBAID to create derived views.
The application programmer also creates and runs programs in
COBOL or PL/1 that access data with views, and may use SPECTRA
and/or MANTIS to access data with views.

The end user uses SPECTRA, MANTIS, and/or in-house application
programs to access data with views.

P26-8220-64

The user’s perspective—views

The user’s perspective—views

Using RDM, the application programmer or end user can access
database information without needing to know the data’s physical
location, physical structure, or integrity constraints. RDM allows the user
to view data as if it were arranged in tables or relations, consisting of
rows and columns as shown in the following illustration:

VIEW - A Table of Data

CUSTOMER CUSTOMER CUSTOMER
Number Name Class
E40000 DOUG REED Q1 > ROW
F80081 TOM LANGDON B4 > ROW
H22233 ATHENS INC i ROW
COLUMN COLUMN COLUMN

Accessing views

The user accesses views provided by the DBA. The DBA creates views
and relates them to users. The DBA defines the maintenance action
(INSERT, UPDATE, and DELETE) that users can perform with a view.
The DBA can also limit a view to read-only access, with no maintenance
capabilities.

Application programmers access views through program logic using
COBOL, PL/1, or MANTIS. COBOL and PL/1 programmers use the
Relational Data Manipulation Language (RDML) precompilers to compile
RDML statements into executable code. Refer to the SUPRA Server
PDM RDM COBOL Programming Guide (OS/390 & VSE), P26-8330, or
the SUPRA Server PDM RDM PL/1 Programming Guide (OS/390 &
VSE), P26-8331, for information on using RDML statements in
application programs.

End users can access views directly through SPECTRA, a relational
guery and update tool.

RDM Administration Guide 21

Chapter 1 Overview of the SUPRA Relational Data Manager

22

Subsetting views

The DBA can define generalized views that many users and programs
can access. The user can create a subset of a view’s columns or reorder
the columns to meet a specific need. A subset of a view is called a user

view.

The following figure shows an example of different users subsetting and
reordering a view. Each user is accessing the BRANCH-STOCK view
which contains five columns. The SPECTRA user uses the entire view in
the same sequence as specified in the View Definition. The MANTIS
application uses only part of the available data, and also reorders the
columns. The application programs on the right use all of the columns,

but reorder them.

COBOL
SPECTRA MANTIS
PL/
STOCK-PRODUCT BRANCH-NO STOCK-YTD-SALES
STOCK-YTD-SALES BRANCH-NAME STOCK-PRODUCT
STOCK-QNTY STOCK-PRODUCT BRANCH-NAME
BRANCH-NO STOCK-QNTY STOCK-QNTY
BRANCH-NAME BRANCH-NO
BRANCH-STOCK
STOCK-PRODUCT
STOCK-YTD-SALES
STOCK=QNTY

BRANCH-NO
BRANCH-NAME

P26-8220-64

The DBA's perspective—three-schema architecture

The DBA's perspective—three-schema architecture

The DBA designs and maintains the database. SUPRA Server provides
the DBA with a three-schema architecture, allowing a physical and logical
implementation that is insulated from change. Three-schema
architecture consists of internal, conceptual, and external schemas.

Internal schema

The internal schema is at the lowest level of three-schema architecture.
The internal schema defines the physical contents of the files. RDM
supports PDM primary files, PDM related files, and KSDS VSAM files.
The internal schema by itself constitutes a one-schema architecture, as
shown in the following figure:

RDM Administration Guide

foreign
key to
BRAN

Primary Data Set
BRAN

BRANCH-NUMBER
BRANCH-NAME
BRANCH-ADDR
BRANCH-CITY
BRANCH-STATE
BRANCH-ZIPCODE

Primary Data Set
REGN

BRANCH-REGION
BRANCH-DEL-ROUTE
BRANCH-SLS-QUOTA
BRANCH-STF-QUOTA

RMS Data Set
CUST

CUSTOMER-NO
CUSTOMER-NAME
CUSTOMER-ADDR
CUSTOMER-CITY
CUSTOMER-STATE
CUSTOMER-ZIPCODE
CUSTOMER-CLASS
CUSTOMER-CR-CODE
CUSTOMER-CR-LIM
CUSTOMER-BRANCH

= REGION-NO
REGION-NAME

foreign
key to
REGN

23

Chapter 1 Overview of the SUPRA Relational Data Manager

24

Conceptual schema—base views

The conceptual schema is at the middle level of the three-schema
architecture. The conceptual and internal schemas, without the external
schema, constitute a two-schema architecture (see the following
illustration). The conceptual schema defines logical access to the
physical database.

The conceptual schema consists of base views. Base views access
physical files directly. Referential integrity and file security are handled
best at the base view level.

You can define base views using the DBAID utility or Directory
Maintenance. The DBAID utility is an online and batch tool for defining
and testing views, and for relating them to users. See “Maintaining the
RDM” on page 103 for more information on using the DBAID utility.
Refer to the SUPRA Server PDM RDM PDM Support Supplement
(OS/390 & VSE), P26-8221, or the SUPRA Server PDM RDM VSAM
Support Supplement (0S/390 & VSE), P26-8222, for information on
creating base views based on the physical file type.

Base

PRODUCT STOCK BRANCH :
Views

Physical
< Yy > P
VSAM VSAM PDM PDM PDM

P26-8220-64

The DBA's perspective—three-schema architecture

External schema—derived views

At the uppermost level of the three-schema architecture is the external
schema consisting of derived views. The external schema represents
the database independent of logical and physical structures, integrity, and

physical access. The following figure illustrates the three-schema
architecture:

(App”caﬂon> (MANTIS) (SPECTRA>
Program

EXTERNAL SCHEMA

Derived View of Data

CONCEPTUAL SCHEMA

Normalized Tables

INTERNAL SCHEMA

H |

H H |I]

Physical Structure and Access Methods

RDM Administration Guide 25

Chapter 1 Overview of the SUPRA Relational Data Manager

Derived views are the implementation of the external schema. The
application programmer or SPECTRA user sees no difference between
base or derived views. They are both “views” of data. You can place
more restrictive security or higher levels of security on derived views;
however, you cannot override any file security or integrity specified in the
base view. Base views insulate derived views from changes to the
physical database.

You define derived views using the DBAID utility or Directory
Maintenance. You store these view definitions on the Directory for
application programmers and end users to use later. You also use the
DBAID utility to prototype and test new views before putting these views
into production. Once you define the views and relate them to users, they
are available for use. You can use RDM reports to show the definition of
a view, which users can access the view, and which programs use the
view. See “Using the RDM reports” on page 211 for more information
about RDM Reports.

RDM security
The RDM controls security in the following ways:

¢+ User-to-view Relationships define which views the user can use. You
can relate both base and derived views to users using the DBAID
utility or Directory Maintenance. See “Relating views to users” on
page 130 for information on relating views to users.

¢ View Accesses define what actions a view can perform, such as
update, delete, and insert by specifying the ALLOW clause in the
View Definition. Views can be read-only, insert-only, or unlimited in
their ability to perform maintenance actions on the database. The
DBA can create derived views that impose additional security
restrictions.

26 P26-8220-64

The DBA function in the RDM

The DBA function in the RDM

In an environment where a database includes data shared by many users
and programs, the DBA must develop the database definition centrally.

In such a shared environment, the database design must meet the needs
of the various users. The DBA makes the decisions for how data is to be
shared centrally.

The DBA's responsibilities may be spread among the user groups, or
they may belong to a central person or staff. Whether you have a
database administrator or a database administration group depends on
the size and needs of your particular organization. The proper
administration of RDM requires broad knowledge of data use throughout
the organization. The DBA's function is to do the following:

¢ Describe the logical and physical data attributes.

¢ Define relationships that exist between data units.

¢ Define how to access the data.

¢ Provide security, integrity, and validation constraints for the database.
¢ Optimize system performance.

¢ Maintain control over the definition and generation of data views.

¢ Gather users’ data needs and define views to fit those needs. The
DBA can also assist users in determining the best method for
structuring their views and application programs.

¢ Control changes made to the View Definitions, and provide copies of
definitions and changes to those who need them.

RDM reports are tools for both the DBA and the application programmer.
The reports show available views and information about the Directory.
See “Using the RDM reports” on page 211 for information about RDM
reports.

With DBAID, the DBA can design, test, and examine the performance of
a view before placing it into production use and assigning it to users. See
“Managing views with the DBAID commands” on page 133 for
information about using DBAID.

RDM Administration Guide 27

Chapter 1 Overview of the SUPRA Relational Data Manager

System requirements

28

You must meet several requirements before RDM can be installed and
made operational. For information about running DBAID and RDM in the
various operating environments and modes, refer to the SUPRA Server
PDM and Directory Administration Guide (OS/390 & VSE), P26-2250.
The following sections describe general requirements for RDM.

Directory

The RDM uses the Directory to store view information. The RDML
compiler, RDM, and DBAID use the Directory. The RDM run time
processors require information contained in the Directory.

The RDM ignores some Directory data, including the following:

¢+ Views data:
- Generalized-updates indicator
- RDM indicator
- Site-table name

¢ User-to-view relationship data:

Define-generalized-updates option
Execute-generalized-updates option
Define-RDM-applications option
Execute-RDM-applications option

¢+ View-to-external-field relationship data:
- Alias name
- Record code
- Control-key indicator

Physical Data Manager

The SUPRA Physical Data Manager (PDM) is required to access the
Directory to retrieve and update the information required by the RDM.
The PDM is required to access PDM user files. VSAM is required to
access KSDS VSAM user files.

Hardware

The RDM runs on an IBM 370 or similar, later-model mainframe CPU
(30xx, 43xx, etc.). When running DBAID in an online environment, IBM
3270s (or equivalent equipment) are the only terminal types supported.

P26-8220-64

2

Accessing user data

Overview of base views and derived views

Derived
Views

Base
Views

An application programmer or an end user (a SPECTRA user) can
access data with two types of views: base views and derived views.
Base views access only files. Derived views access base views or other
derived views. The difference is not significant to an application
programmer or end user; both base views and derived views are seen as
tables of data. The difference is important to the DBA who constructs the
views.

You can define base views on the Directory using DBAID or Directory
Maintenance. The view definition consists of defining columns in a view
and specifying the files to access. The syntax for base view definitions is
described in the SUPRA Server PDM RDM PDM Support Supplement
(OS/390 & VSE), P26-8221, and the SUPRA Server PDM RDM VSAM
Support Supplement (OS/390 & VSE), P26-8222. Base view definitions
vary depending on the types of files you are accessing.

You build derived views using DBAID. You define the columns that make
up the view and which base views to access to gather the columns. Many
derived views can access a single base view. Each derived view can
reorder the columns or include or exclude different columns. The
following figure shows how several derived views can access a single
base view. Integrity and view-to-file security are implemented at the base
view level; additional security can be implemented in the derived views.

My View “Boss” View Another View | additional Security
6 columns 8 columns 7 columns)
Read only All options Update only Special Purpose
Base View File Security
12 columns
All options File Access

RDM Administration Guide 29

Chapter 2 Accessing user data

30

A derived view may access more than one base view. The following
figure shows a derived view accessing several base views. Derived view
1 (DV-1) accesses base views 1 and 2, but can read only. Derived view
2 (DV-2) accesses all three base views and can perform all functions
(INSERT, UPDATE, DELETE, and READ). Derived view 3 (DV-3) has
UPDATE capabilities and is accessing base views 2 and 3. Derived view
4 (DV-4) is accessing only base view 3, and can only read the view.

DV-1 DV-2 DV-3 Dv-4
6 columns 12 columns 9 columns 10 columns
Read only All options Update only Read only
Base View 1 Base View 2 Base View 3
6 columns 8 columns 12 columns
All options All options All options

P26-8220-64

Designing derived views

Designing derived views

To design derived views, you must be familiar with your base views. You
can use Directory Reports to report on the base views, and use DBAID to
test and examine them. You can also use SPECTRA to access base
views as an end user.

Follow these guidelines to define derived views:

¢

RDM Administration Guide

Design the derived view for ease of use. Cincom recommends that
you limit the size of your views. In general, it is better to have many
small or medium size views than it is to have one large view
containing all the data.

Create customized views according to the various job functions within
your organization. Another approach is to have certain views for
maintenance, different views for retrievals, and others for reporting.

Use the DBAID utility to build and test the views and ensure their
validity before placing them into production.

Derived views can access multiple base views, but they cannot
directly access files.

You may impose additional maintenance restrictions (INSERT,
UPDATE, and DELETE) on derived views, but you cannot override
maintenance restrictions imposed by the base view. Refer to RDM
reports or DBAID to examine the maintenance restrictions imposed
by a base view.

To centralize integrity constraints, specify all referential integrity in the
base views.

When you construct a view for update, the columns in the row must
depend on the logical key value. This helps avoid update anomalies.

Every column in a derived view inherits the validation criteria of the
underlying base view.

It is important for programmers to know if a column is required.
“Required columns” on page 39 for information on required columns.

31

Chapter 2 Accessing user data

How the RDM constructs rows

The RDM constructs one or more rows based upon the view definition
that you supply. RDM does this by obtaining data from the files or views
named in the ACCESS statements. After RDM obtains the data, it moves
the data into each column of the row from the appropriate source field or
source column, as shown in the following figure:

Derived View 1

Derived View 2

Column | Column | Column | Column Ro
1 2 3 4 w

1 3 5 6

Column | Column | Column | Column
Row

Base View Column | Column | Column | Column | Column | Column

1 2 3 4 5 6
|
< R < N < Y <
Data Set Data Set Data Set Data Set
1 2 3 4

32 P26-8220-64

Providing keyed access

Providing keyed access

Through the view definition, you can provide keyed access to data. If you
do not provide keyed access, a serial access of the file or view results.
Even if a physical key read can be performed on the database file, you
can still define a nonkeyed view which would limit that file to sequential
access. To be selected, the physical data must be equal to the logical
key value.

There is an important difference between defining a logical key and an
access key. You define the logical key using the keyword KEY (or
NONUNIQUE KEY) in the appropriate column definition(s) in the view
definition. You define the access keys in the appropriate access
definition(s) in the view definition. The access keys determine the
accessing method to use. “Defining derived views” on page 64 discusses
view definitions in detail. In the following example, CUSTOMER-NO and
CUSTOMER-NAME are both identified as logical keys. However,
CUSTOMER-NO is the access key to the customer file.

KEY CUSTQVER- NO
KEY CUSTOVER- NAME
CUSTQVER- ADDR
CUSTQVER- STATE
ACCESS CUST WHERE CUSTQVER- NO = CUSTOVER- NO ALLOW ALL

Every view can have zero to nine logical key columns, and the program
can supply any number of these key values for the view. A logical key in
the view does not, of itself, cause the RDM to perform a physical keyed
access. If you define a column as a logical key and it maps to an access
key which maps to a physical key (a control key on a PDM primary file),
and the user program requests a read and supplies that logical key, the
RDM performs a keyed access of the physical file. The RDM goes
directly to the requested record.

This does not mean that you can assign only logical keys to access key
columns. For example, when you have customer numbers and order
numbers, if you define customer number (which would probably be a
physical key) as a logical key, the random access of the requested
customer number would be very quick. You could just as well define
customer name, which is a data field in the file record, as a logical key.
In this case, the RDM would service the request, and would sequentially
search the file (unless you also had an index on customer name) for a
match on the customer name supplied by the program. This is a valid
use of the logical key, but it would result in much slower processing
because it requires a serial scan of the file.

RDM Administration Guide 33

Chapter 2 Accessing user data

34

The REQ option of the column definition designates required columns. If
a column is required, it must be present and valid for the RDM to return a
row. Otherwise, the row is skipped and not returned.

Each logical key consists of one or more columns. You can assign fixed
values (constants) to a key column to constrain the application program
to retrieve or update selected records. Logical key columns are required
columns. See “Required columns” on page 39 for an example of the
impact of required columns.

You can define four different types of logical key columns: unique key,
nonunique key, constant, and unique constant. You can specify logical
keys as unique or nonunique depending upon your application
requirements and record organization. The following sections provide
information on logical key columns and required columns.

P26-8220-64

Providing keyed access

Unique keys

A relation with a unique key has one row for each key value. Each row
can map to one or more physical files. Therefore, using a unique key
with unnormalized views may retrieve more than one row for each unique
key.

You can build views that have only unique keys but still return several
rows per unique key combination. This occurs when the unique logical
keys do not uniquely specify a single logical row. Using the customer
order view (from the illustration under “Compound unique keys” on

page 37) as an example, if the customer number column is designated
as a unigue logical key but the order number column is not, the user
would be able to specify customer number on a GET and retrieve
multiple records for each customer number. Basically, this is a generic
search forced on the caller because he cannot specify the order number
as part of the keyed GET.

MNOTE

Cincom recommends that you uniquely identify a single logical row
whenever possible. Itis required for INSERT and UPDATE operations.

When you define a simple or compound unique key (see “Simple unique
keys” on page 36 and “Compound unique keys” on page 37), the
program might not supply all the values. For example, if you define the
customer number and order number as a compound unique key, the
program can retrieve the row using zero, one, or two key values. In this
way, the program can implement a generic read by specifying zero or
more key values and less than the total number of logical keys in the
view. If the program specifies just customer number, the RDM would
retrieve all orders for that customer.

If the logical key maps to the physical key of a file which maintains
uniqueness of the physical key, the RDM will let the data manager
maintain the uniqueness. If the column does not map to a unique key,
the RDM tries to keep the value unique.

RDM Administration Guide 35

Chapter 2 Accessing user data

36

Simple unigue keys

Think of a simple unique key as a selection criteria. All that occurs is an
equal comparison between some column and a program-specified value.
An example of a simple unique key is the customer number. No two
customers for a company should have the same customer number.
Therefore, the key is unique. The following figure shows columns from
the customer file, pointing out customer number as a unique key.

CUSTOMER | CUSTOMER | CUSTOMER | CUSTOMER
NUMBER NAME ADDRESS PHONE
Simple
unique key

P26-8220-64

Providing keyed access

Compound unique keys

A compound (concatenated) unique key consists of more than one
column (see the following figure). Assume your view has a customer
number and an order number, both defined as logical keys. At the
program level, the user can code a GET view using customer number
value and an order humber value. The RDM tries to locate the row based
on both values.

CUSTOMER | CUSTOMER | CUSTOMER | CUSTOMER ORDER ORDER
NUMBER NAME ADDRESS PHONE NUMBER AMOUNT
AND
Compound
unique key

It is as if the program had specified GET customer order where customer
number equals a certain value and order number equals a certain value.
Physical navigation depends on how the fields are defined on the
database and in the ACCESS statement on the Directory. For example,
if customer number and order number are defined as a compound
physical key, then the RDM takes the two key values, concatenates
them, and does a random read on that compound value.

Another example is a customer having more than one order where you
want to keep track of a particular relationship. The customer number
would reside in one file and the order number in another file. In this case,
the RDM directly reads in the customer number according to the
program-supplied value. It then sweeps the customer order file until it
finds the supplied order value. To the user program, there is no
difference; the record is being retrieved as identified by the compound
unique key.

The key value of a compound unique key is the combination or
concatenation of the logical key values. The RDM tries to keep this
combination unique. Using the customer-order example, several records
for a given customer number may exist. There also may be several rows
for a given order number, but only a single row for the customer
number/order number combination.

RDM Administration Guide 37

Chapter 2 Accessing user data

Nonunique keys

Nonunique keys differ from unique keys in that the RDM does not
maintain the key value as unique. The column is still required, and the
user may specify a value for the column to select rows, but the same key
value may return multiple rows. Do not confuse this with a generic
search, which also may return several rows for a given key value.

Simple nonunique keys

Another type of key is the simple nonunique key. If you can have more
than one row with the same logical key, then it is an unnormalized view
and has nonunique keys. An example is a customer file in which you
keep a list of notes or comments about each customer. You do not date
the comments and you do not want to supply another key; but for each
customer, you want to retrieve a list of comments that may have been
recorded. This is a nonunique, unnormalized view because there would
be multiple records with the same customer number. In this case, you
could define the customer number as a nonunique key. When the
program does its first GET using some customer number, the RDM
retrieves the first comment for that customer. A subsequent GET
retrieves the second comment; the third GET, the third comment, and so
on. When the RDM reaches the last note for that customer, it reaches a
boundary condition, and returns a “not found” status to the program.

Compound nonunique keys

A compound nonunique key is an extension of the simple nonunique key
in that you have more than one column defined as the key and at least
one of the keys is nonunique. All the nonunique keys together still do not
completely describe the row occurrence as unique. You can still have
more than one row with that same compound nonunique key.

A nonunique key, in combination with other keys of either type (unique or
nonunique), forms a nonunique key.

38 P26-8220-64

Providing keyed access

Constant keys

You can supply a logical key with a fixed value, called a constant, by
entering the keyword CONST or UNIQUE CONST in the column
definition and then assigning a literal value to the column. The RDM
uses this value as though the program had supplied the value as a key.
You can use a UNIQUE CONST column to prevent duplication on inserts
for the constant value specified. Constant columns must pass data
validity checking if checking is specified, and may not be null. A constant
key column is always a required column in the view.

You can use a constant key for value-based security. For example, you
want to define a view that retrieves only the customers from Tennessee.
You could supply a constant of TENN (or whatever your application
required) to the state column. Then, the program can retrieve and
update only Tennessee customers.

When you designate a column as a constant key, the RDM does not
return the column value in the row. For example, the user of the view
would never see the state value TENN.

Required columns

A required column must have a value that is valid and not null. It must
have a value whether or not you want to retrieve the value in a given
case. Every key column (every column with any of the qualifiers KEY,
NONUNIQUE KEY, CONST, or UNIQUE CONST) is a required column.
You can specify a nonkey column as a required column with the qualifier
REQ.

Your programmers must know which columns have been defined as
required columns since it can affect processing. If the programmer does
not include a required column in the user view, the RDM still requires the
column, even though it is not returned to the user view.

RDM Administration Guide 39

Chapter 2 Accessing user data

Using domains, null values, and default values for physical

fields

40

Every column in a view corresponds to a physical field defined on the
Directory. The definition of a physical field on the Directory specifies the
field’s characteristics such as length, format, validation option, default
value, and null value. The RDM uses these characteristics from the
Directory when processing RDML requests. Especially important in
processing views are the validation option, default value, and null values
because they are used to validate the data and maintain data integrity.

You can use the DBAID command COLUMN-DEFN to display the default
value, null value, and validation criteria for each column in a view. You
can also use this command to report on the physical characteristics of the
column, such as length, edit masks, format, and ordering. See
“Managing views with the DBAID commands” on page 133 for more
information about DBAID commands.

The following sections discuss how the RDM utilizes the information on
the Directory about a physical field.

P26-8220-64

Using domains, null values, and default values for physical fields

Validation options

The Directory contains the validation options and defines the options the
RDM should use to validate a column value when mapping a column to a
physical field. The available options are:

Option Meaning

R Range Checking Specifies that the RDM should verify that
the column value is within a minimum and
maximum range specified on the
Directory.

T Table Checking Specifies that the RDM should verify that
the column value is an entry on a
validation table stored on the Directory.

E Exit Specifies that the RDM should utilize the
specified exit to verify the value in a
column.

(Blank) No validation.

You can specify only one validation option for a particular field; options
are mutually exclusive. Refer to the SUPRA Server PDM Directory
Online User’s Guide (OS/390 & VSE), P26-1260, or the SUPRA Server
PDM Directory Batch User's Guide (0S/390 & VSE), P26-1261, for
instructions for specifying validation options with Directory Maintenance.

The RDM performs validation checking before each INSERT or UPDATE
whenever a column in a view corresponds to a physical field with
validation. When performing retrievals on base views, the RDM checks
the Retrieval Validation Flag for each physical field. The Retrieval
Validation Flag is set to Y if the field should be validated on retrievals. If
a column maps to a physical field and the Retrieval Validation Flag is set
to Y, the RDM validates the data.

Range checking

If you specify range checking, the RDM verifies that a value in a column
is within a specified range. You can specify the minimum value and the
maximum value that the RDM uses to validate. The maximum length of
a range value is 32 bytes. This is normally sufficient for data types other
than character. For character columns that have lengths greater than 32
bytes, the range value is padded to the right with blanks during the
comparison.

RDM Administration Guide 41

Chapter 2 Accessing user data

42

Table checking

If you specify table checking, the RDM verifies that a value in a column is
contained within a table of values stored on the Directory. You build a
table of values on the Directory and specify the name of the table for the
RDM to use. The DBA must create each validation table on the
Directory. Each entry in the table can be a maximum of 72 bytes long.
You may use hex notation if you wish.

For example, you have ten suppliers. Whenever you place an order, the
RDM verifies that the supplier you specify is one of the ten you are
authorized to use. If the supplier is in the table, your order is processed.

Exits

If you specify exit validation, the RDM calls the user-written exit program
whose name you supply for that field. You design and write the exit to
perform whatever validation checking you need. The exit must pass a
return code back to the RDM indicating whether the column’s value is
valid. See “Customizing the RDM processing with user exits” on page
237 for information about using validation exits.

Default validation

If a field's type is defined as packed decimal or zoned decimal, the RDM
automatically verifies that the value for the field is a valid number. This
check is made after the check for nulls but before doing user-specified
validation, if any.

P26-8220-64

Using domains, null values, and default values for physical fields

Join compatibility

The RDM ensures that any columns used in a join are from the same
domain unless you explicitly override this checking. For example, you
cannot join a column from a domain of numbers with a column from a
domain of alphanumeric characters. The following ACCESS statement is
incorrect because CUSTOMER-NO is from the CUSTOMER-NUMBER
domain while CUSTOMER-NAME is from the NAME domain.

ACCESS E$CU WHERE CUSTOVER- NO = CUSTOVER- NAVE

The next example uses the extra equal sign to indicate that the RDM
should not perform normal domain checking. This ACCESS statement is
permissible as long as CUSTOMER-NAME and CUSTOMER-NO are the
same length.

ACCESS E$CU WHERE CUSTOMER- NAME = = CUSTOMER- NO

If one or both columns in a join do not have a domain, the RDM only
verifies that the length of both fields is the same.

Redundant columns must be from the same domain (if all redundant
columns have domains specified) unless you override this checking. You
override the normal domain checking by using the optional equal sign
when making columns redundant. The following example overrides the
restriction that REGION-NO and BRANCH-NO must have the same
domain:

REQ REG ON- NO = = REG ON- NO = BRANCH- NO

RDM Administration Guide 43

Chapter 2 Accessing user data

44

GET processing

When performing GETS, the RDM validates each column in the base
view if the retrieval validation flag is set to Y. The RDM verifies the value
either by checking the validation table or the range specified, or by
utilizing the validation exit. The RDM returns an invalid column status
indicator (ASI) for each column that fails to meet the validation criteria.
Required columns must have values that are valid and not null, or the
RDM does not return a row.

INSERT processing

Before processing an INSERT command, the RDM validates each user
view column’s value. The RDM returns an invalid ASI for each column
that fails to meet the validation criteria. If all column values are valid,
then the RDM INSERT proceeds.

UPDATE processing

Before processing an UPDATE command, the RDM validates each user
view column’s value. The RDM returns an invalid ASI for each column
that fails to meet the validation criteria. If all values are valid, then the
RDM UPDATE proceeds.

P26-8220-64

Using domains, null values, and default values for physical fields

Null values

The Directory allows you to define, for each field, whether the field can be
null and what value the field should contain to represent a null value. A
null value means that a column is empty and its value has no meaning.
Typically, blanks are used to represent null values. However, you can
define on the Directory what value is to represent a null value for a field;
the value can be blanks, or zero, or any value you specify.

GET processing

When the RDM processes a GET request, each column that is equal to a
null value has an ASI of missing (-), and is set to zero for numeric type
data and to blanks for all other data types. Required columns must not
be null.

INSERT processing

When the RDM processes an INSERT command, all columns with a null
ASI (an ASI of N) are set to their corresponding null value.

The application program can insert a null value into a column by setting
the ASI to N or by supplying the null value in the column. The DBAID
user can insert a null value by inserting the keyword NULL into the
column or by supplying the null value.

The RDM rejects any insert that supplies a null value for a required

column. The RDM allows a null value for a foreign key if the foreign key
is not a required column.

RDM Administration Guide 45

Chapter 2 Accessing user data

UPDATE processing

When the RDM processes an UPDATE command, all columns with a null
ASI (an ASI of N) are set to their corresponding null value.

The application program can update a null value into a column by setting
the ASI to N or by supplying the null value in the column. The DBAID
user can insert a null value by inserting the keyword NULL into the
column or by supplying the null value.

The RDM rejects any update that attempts to change the value of a
required column to a null value. The RDM allows a null value for a
foreign key if the foreign key is not a required column.

NOTE

If the user supplies the null value in a column, the application program is
dependent on the null value.

46

DELETE processing

When a view deletes a primary key, the base view definition can allow for
the foreign keys to be either cascade deleted or nullified, or to restrict the
delete. You specify that the foreign keys should be deleted by specifying
ALLOW DELETE on the access to the file containing the foreign key.
Alternatively, you specify the foreign key to restrict the delete by not
adding an ALLOW on the access to the file containing the foreign key.
You specify that the foreign keys should be nullified by specifying ALLOW
UPDATE on the access to the file containing the foreign key. This is
useful, for example, if you want to delete a region but not all of the
branches. Each branch’s region number is set to a null value until the
branches can be reassigned to a new region. See “Maintaining
referential integrity” on page 87 for more information.

P26-8220-64

Using domains, null values, and default values for physical fields

Default values

The RDM uses the default value for a physical field when no column in
the user view maps to that physical field, either because the user view
subset does not include the mapping column or because the view does
not contain the mapping column. A default value for each field can be 1—
32 alphanumeric characters; however, blanks are commonly used as the
default. Default values are defined on the Directory. For fields larger
than 32 bytes, the default value is padded on the right with blanks.

Example 1. An RDM application program inserts a new branch using the
user view BRAN-USER, which is derived from the base view BRAN.
When the program inserts a new branch, it does not supply a value for
the BRANCH-STATE field. In this case, the RDM uses the default value
specified for the BRANCH-STATE field:

BRAN base view BRAN-USER user view
BRANCH-NO BRANCH-NO
BRANCH-NAME BRANCH-NAME
BRANCH-ADDR BRANCH-ADDR
BRANCH-CITY BRANCH-CITY
BRANCH-STATE BRANCH-REGION

BRANCH-REGION

The program supplies the following row:
1241 DUNCAN 124 NORTH 'B' ST ORANGE 777

The physical field that maps to BRANCH-STATE has a default value of
CA. The RDM uses the BRANCH-STATE default value, CA, and inserts
the following row into the database:

1241 DUNCAN 124 NORTH 'B' ST ORANGE CA 777

RDM Administration Guide 47

Chapter 2 Accessing user data

48

Example 2. Another example is when a view does not contain a column
that maps to a field in the physical file. In this example, the BRAN view
does not include a column that maps to the BRANCH-STATE physical
field. When the program inserts a new branch, it cannot supply a value
for the BRANCH-STATE field. In this case, the RDM uses the default
value specified for the BRANCH-STATE field:

BRANCH file E$BR |BRAN view
BRANCH-NO BRANCH-NO
BRANCH-NAME BRANCH-NAME
BRANCH-ADDR BRANCH-ADDR
BRANCH-CITY BRANCH-CITY
BRANCH-STATE BRANCH-REGION

BRANCH-REGION

The program supplies the following row:
1241 DUNCAN 124 NORTH 'B' ST ORANGE 777
The physical field that maps to BRANCH-STATE has a default value of

CA. The RDM uses the BRANCH-STATE default value, CA, and inserts
the following record into the database:

1241 DUNCAN 124 NORTH 'B' ST ORANGE CA 777

P26-8220-64

3

Modifying user data

This chapter describes how to change the contents of your database and
how to control accesses at the file or view level. It also describes the
status indicators that the RDM returns to the DBAID user or the
application program when accessing and modifying your database.

Changing the database contents

It is possible to change the contents of the database in the following
ways. You can:

¢ Insert new information.
¢ Change existing information to new values.
¢ Delete information.

The ALLOW phrase of the ACCESS statement controls maintenance
actions on a physical file or on a view. It specifies what maintenance is to
be allowed for each file and the logical actions to be performed on a view.
Therefore, you control security on a file or view level. You can use the
options in the following table with the ALLOW clause (see “Access
definition” on page 72 for more information):

Option Action

INSERT Allows insertions to the database.
UPDATE Allows updates or replacements to the database.
DELETE Allows deletions from the database.

SHARED Allows column values to be shared between views (not
available for use in derived views).

ALL Allows all forms of database modification.

RDM Administration Guide 49

Chapter 3 Modifying user data

50

The following sections discuss INSERT, UPDATE, and DELETE. The
examples are based on the sample database shown in the following
figure.

The following figure also shows that BRANCH-NO, the primary key in the
BRANCH relation, has a foreign key, CUSTOMER-BRANCH, in the
CUSTOMER relation. REGION-NO, the primary key in the REGION
relation, has a foreign key, BRANCH-REGION, in the BRANCH relation.

Primary Data Set Primary Data Set
BRAN REGN

= BRANCH-NUMBER = REGION-NO
BRANCH-NAME REGION-NAME
BRANCH-ADDR
BRANCH-CITY .
BRANCH-STATE foreign

key to

BRANCH-ZIPCODE REGN

BRANCH-REGION
BRANCH-DEL-ROUTE
BRANCH-SLS-QUOTA
BRANCH-STF-QUOTA

foreign
key to
BRAN

RMS Data Set
CUST

CUSTOMER-NO
CUSTOMER-NAME
CUSTOMER-ADDR
CUSTOMER-CITY
CUSTOMER-STATE
CUSTOMER-ZIPCODE
CUSTOMER-CLASS
CUSTOMER-CR-CODE
CUSTOMER-CR-LIM
CUSTOMER-BRANCH

The base view for the subsequent examples is as follows:
0100 DEFI NE BRANCH VI EW

\%

0200 KEY BRANCH- NO

0300 BRANCH- NAVE
0400 BRANCH- ADDR
0500 BRANCH-CI TY
0600 BRANCH- STATE
0700 BRANCH- ZI PCODE

0800 REQ BRANCH REG ON = BRANCH- REG ON = REG O\-NO
0900 ACCESS E$BR WHERE BRANCH- NO = BRANCH- NO

1000 ALLOW ALL

1100 ACCESS E$RG ONCE WHERE REG ON- NO BRANCH- REG ON
1200 ACCESS E$CU WHERE CUSTOMER- BRANCH = BRANCH- NO

VVV VYV VYVVYVVYV

P26-8220-64

Changing the database contents

Inserting information to the database

For an insert to a relation, you can code your view to have the RDM:
¢+ Reject the insert if the foreign key does not exist as a primary key.

¢+ Use the foreign key to automatically insert it as a primary key in the
target relation.

To insert a branch to the example database, you need a region for that
branch because the BRANCH relation has a foreign key
(BRANCH-REGION) that is the primary key (REGION-NO) in the
REGION relation. You can have the RDM reject any insert of a BRANCH
if the REGION does not exist. You can also have the RDM automatically
insert a region when you insert a branch. In the example view above, the
ACCESS statement

> 1100 ACCESS E$RG ONCE WHERE REG ON- NO = BRANCH REG ON

provides the integrity that will not allow insert if BRANCH-REGION is not
an existing primary key in the REGION relation. See “Maintaining
referential integrity” on page 87 for more information about referential
integrity.

The illustration under “Changing the database contents” on page 49
shows how the foreign key in the BRANCH relation references the
REGION relation.

You control insertions by defining ALLOW INSERT for the appropriate
files or views in your ACCESS statement. If you have not allowed for
insertions on a file or view, the RDM cannot insert any rows into that file
or view.

The RDM checks the validity of all columns before an insert. All required
fields must be valid and not null for an insert to succeed. You can insert
null only if nulls are allowed.

RDM Administration Guide 51

Chapter 3 Modifying user data

52

Updating information on the database

For an update to a relation, you can code your view to have the RDM:
¢+ Reject the update if the foreign key does not exist as a primary key.

¢+ Use the foreign key to automatically insert it as a primary key in the
target relation.

To allow updates, define ALLOW UPDATE in your ACCESS statement
for the file or view you want to update. The program can then read (GET)
a row, change a column and issue an UPDATE command. The RDM
updates the physical record. The RDM modifies only the physical
records that have changed.

For example, assume you have a view consisting of three columns from
three different files. The program gets the row, changes the value of only
one of the columns, and issues the UPDATE command. The RDM does
not do three writes to the three files; the RDM only issues one write to the
affected file.

The RDM checks the validity of all columns before an update. All

required fields must be present and not null for an update to succeed.
You can only update a column to null if nulls are allowed.

P26-8220-64

Changing the database contents

Deleting information from the database
The RDM has three types of delete integrity:

¢ Restrict delete
¢ Cascade delete
¢ Nullify delete

An example of a restrict delete is trying to delete a BRANCH that has
CUSTOMERS referencing it. If, on the ACCESS statement of the
BRANCH-VIEW example above, you code

> 1200 ACCESS E$CU WHERE CUSTOVER- BRANCH = BRANCH- NO

then the RDM will check the CUSTOMER file for customers related to the
branch number you want to delete. If customers exist for the branch, you
cannot delete the BRANCH.

In a cascade delete, you would tell the RDM to delete any customers
linked to the branch you are deleting. In that case, you must code
ALLOW DELETE on the BRANCH and CUSTOMER relations, and no
customer data may be in the view.

For a nullify delete, you code ALLOW DELETE on the BRANCH relation
and ALLOW UPDATE on the CUSTOMER relation. Then for all
customers in the branch, the RDM will set the foreign key to BRANCH to
its null value.

You control deletions by defining ALLOW DELETE for the appropriate
files or views in your ACCESS description. If you have not allowed for
deletions on a file or view, the program cannot delete any rows from that
file or view.

RDM Administration Guide 53

Chapter 3 Modifying user data

54

Allowing shared column values

You can allow column values to be shared between views by specifying
SHARED on the ALLOW phrase of the ACCESS statement in base
views. You cannot use SHARED in derived views. Using SHARED
allows for:

¢ More efficient processing because automatic column value checking
is bypassed when not needed.

¢ Modification of the same column in multiple views by the same task
or other tasks. For example:

DEFI NE VI EW

0100 KEY BRANCH- NO

0200 KEY BRANCH REG ON

0300 REG ON- NAME

0400 ACCESS E$BR WHERE BRANCH- NO = BRANCH- NO

0500 ACCESS E$RG WHERE REGA ON- NO = BRANCH REG ON
0600 ALLOW SHARED UPDATE

The use of SHARED tells the RDM that the column values from a view
may be shared between views and may change between a GET and a
later UPDATE or DELETE. When the SHARED phrase is present, the
RDM does not check to see whether column values have changed. If
SHARED is not on the ALLOW phrase for an ACCESS statement, then
the RDM performs a check on each column in the view. This ensures
that column values have not changed. The RDM does not check
read-only columns that do not participate in the UPDATE or DELETE.

VVVVYVVYV

In the preceding example, the only maintenance function that can be
performed is UPDATE, and the only column that can be altered is
REGION-NAME. Because SHARED is part of the ALLOW phrase,
REGION-NAME is automatically altered. Since SHARED is part of the
ALLOW phrase, automatic hold and replace will not produce an error
even if another view changes the value of the column. If the ACCESS
statement is changed to:

> 0500 ACCESS E$RG WHERE REG ON- NO = BRANCH REG ON ALLOW UPDATE

and any other view changes the column, an UPDATE or DELETE will fail.
If such a failure occurs, you will receive the following message:

FSI: D VSI: C MG COLUWN VALUE CHANGED BY ANOTHER VI EW

The RDM returns the function status indicator (FSI) value D, indicating a
data error, and the validity status indicator (VSI) value C, indicating that
column value(s) have been changed with another view. The RDM
returns the column status indicator (ASI) value C for each changed
column. In this case, the RDM returns C for the REGION-NAME column.
See “Status indicators” on page 58 for information about status
indicators.

P26-8220-64

Retrieving data with the RDM

Retrieving data with the RDM

The view definition for a particular view defines the characteristics of the
columns in the view and how to access the views or files. (See
“Maintaining referential integrity” on page 87 for information on how to
specify your view definition.) To properly define the access technique for
each file, you need to understand how physical navigation of the
database occurs.

Navigation is the act of moving from one record to another record. The
record could be in the same file, or it could be in a different file.
Therefore, you must understand the different relationships between
records because that affects how navigation occurs from one record to
the next and impacts the overall efficiency of the RDM.

You can set up your views so that the RDM uses one of the following
types of database navigation methods:

¢ Penetration. Efficient access method using a direct, keyed read to
the database.

¢ Sweep. Less efficient access method which involves taking a
positional step forward or backward in the database.

¢ Index. Efficient access method using an index. This section
describes the three types of navigation methods in further detail and
discusses how positional relationships impact the access method.

The simplest relationship is the one-to-one keyed relationship. Some
value from a row is used as a key to identify and access the next row. An
example would be to read a branch record, select the BRANCH-REGION
field, and use that value as a direct read to a REGION file. The key can
be constructed from many different columns in order to get to the next
row. For example, you could read FILE-A and get a piece of data, read
FILE-B and get a piece of data, and put the two pieces of data together to
be the compound key for FILE-C. If you are going from one or many files
to another and are using a key to do your retrieval, it implies a one-to-one
keyed relationship from the source to the destination.

The next kind of relationship is positional relationship. This relationship
implies placement, or location, as opposed to being based on some key
value. For example, in a sequential file, getting the next record is a
one-to-one positional relationship because you do not use a key to get it;
you use the position of the first record to get to the next.

RDM Administration Guide 55

Chapter 3 Modifying user data

56

Database penetration

Database penetration is associated with the one-to-one keyed
relationship. You can have the RDM penetrate (or access) the database
based upon a key value, beginning at one point (or physical record) and
extending outwards using the step-by-step (row-by-row) navigational
method. Penetration then is accessing the database without any context
of where the position was before you entered. An example of database
penetration is retrieving a branch view based upon a particular branch
number as the key. This retrieval does not rely on anything you have
done with the database prior to that point.

Database penetration occurs when an application or user performs a
keyed GET or a GET to establish position within the database. After the
RDM establishes position based on the logical keys, the user may
perform a positional GET without keys or another “penetrating” GET with
keys. A GET first or last row is guaranteed to penetrate the database,
while GET NEXT or PRIOR is positional.

Penetration involves the base file or view that is your starting point. This
is the first record you access. From that record, you travel outward in
one or more directions. Each time you take a step, you use that
information to take additional steps. This would resemble a tree
structure. However, it can come back together to the starting point (as
shown in the following figure) or any other place along the path.

DATA SET 1
GET—— Key-A Key-A
Field-B GET Key-B
Key-C/E
Key-C/E
DATA SET 2
DATA SET 3
3
GET

GET

Key-D

Key-D

Field-E

P26-8220-64

Retrieving data with the RDM

Database sweep

A database sweep is taking a positional step either forward or backward.
The database sweep only occurs on a one-to-many positional
relationship. Sweeping can occur when you have already penetrated the
database and are positioned at some set of records. For example, if you
have a view consisting of regions and branches, you first penetrate the
database based on the region number. When you ask to look at the next
and subsequent branches, you are performing a database sweep based
on a positional relationship.

A sweep always uses an incremental movement, either forward or
backward. You can sweep a file without having first penetrated the
database by starting with the very first or the very last record. This is
called implied penetration.

Indexing

Using an index is an efficient way to access the database. An index
allows the RDM to penetrate the database based on an index value and
then move positionally through the database, retrieving records in index
value order.

Navigational constraints and boundaries

The RDM allows you to identify certain points along the navigation path
which you must reach for the navigation to be valid. Once you reach
those points, you can also identify certain values that must exist by
specifying certain fields as required. The navigation is unsuccessful if the
RDM does not find the fields.

Logical key columns are always required columns. Therefore, if you are
trying to access a file based on a key value and the RDM does not find
that value, navigation stops. If you are attempting a database penetration
and the RDM does not find any required columns, the RDM returns a “not
found” status to the program. However, if you are attempting a sweep
through the database, the RDM skips the rows that do not meet the
constraints and does not return them as part of that view. An example is
the region-branch view which only returns records for regions that have at
least one branch.

Certain boundary conditions exist when you do incremental movement.
When you are incrementally sweeping a keyed file, the end of the file is a
boundary. For example, if you are sweeping through a PDM related file
chain (based on a primary file key), the end of the chain is a boundary. If,
however, you sweep the related file not based on a specific primary file
key, the RDM will get the next primary file record and navigate through its
associated related file chain.

RDM Administration Guide 57

Chapter 3 Modifying user data

Status indicators

The RDM returns status indicators to the application program or to the
DBAID user to indicate Relational Data Manipulation Language (RDML)
processing results. The indicators are the same, regardless of whether
the view is a base or derived view. Base views pass the indicators up to
the derived view.

The types of status indicators are as follows:

¢ FSI (function status indicator). Returned after any RDML function
call and indicates the success or failure of the function.

¢ ASI (column status indicator). Returned after a DELETE, INSERT,
GET, or UPDATE RDML function call and indicates the status of
each column in the row.

¢ VSI (validity status indicator). Returned after a DELETE, INSERT,

GET, or UPDATE RDML function call and indicates the most severe
column status within the row.

58 P26-8220-64

Function status indicators

Status indicators

A function status indicator (FSI) reflects the success or failure of the
RDML function executed. The RDML processor returns the FSI to the
program in an area generated as part of the programmer-supplied
TIS-CONTROL statement. The following shows a COBOL example of
this generation (the asterisk indicates the statement the programmer
specifies; the RDML compiler generates all other statements):

*01 | NCLUDE TI S- CONTROL.

01 TIS- CONTROL.

10 TI S- OBJECT- NAME Pl C X(30).
10 Tl S- OPERATI ON.
15 TIS-ID PIC X(2)
15 Tl S- OPCCDE PIC X
15 TI'S-POSI TION PIC X
15 Tl S- MODE PIC X
15 TI S-KEYS PIC X
10 TIS-FSI PIC X
10 TIS Vsl PIC X
10 FILLER PIC X(2).
10 TI S- MESSAGE Pl C X(40).
10 Tl S- PASSWORD PIC X(8).
10 TI S- OPTI ONS PIC X(4).
10 TI S- CONTEXT PIC X(4).
10 Tl S- LVOONTEXT PIC X(4).

The following table lists the meanings of the FSI values:

| FSI | Meaning

* Successful completion. The RDML function has completed
successfully.

D Data error. The row contains invalid data.

F Failure. The RDML function has failed. Usually caused by a
physical database problem returned to the RDM.

N Not found. The RDML processor could not find an occurrence of
the requested row.

S Security check. The attempted RDML function violated a security
constraint.

U Unavailable resource. The resource required to complete this
function was not available, for example, file not open.

X Reset recommended. While processing, RDML functions modified

the database before the RDM detected the error condition. Issue a
RESET to restore the database. This code overrides D, F, S, or U
indicators.

If the RDML processor returns an FSI value of D, check the ASls to see

which columns contain invalid data. A message associated with the FSI
is accessible in the TIS-MESSAGE area of TIS-CONTROL for all
returned indicators (see the preceding example).

RDM Administration Guide

59

Chapter 3 Modifying user data

Column status indicators

The column status indicators are called ASls. (The A stands for attribute,
which is the same thing as a column.) Each ASI reflects the status of
each column defined in your view. ASIs have a one-to-one mapping to
each column and are placed immediately following the last column in the
view, for example:

COLUMN 1| COLUMN 2 | COLUMN 3 | COLUMN 4 ASI1 ASI2 ASI3 ASI4

You can access the ASlIs through COBOL-assigned names generated by
the RDML compiler. The application programmer codes the program,
specifying an INCLUDE statement for the view required. The RDML
compiler generates a statement for each column included in the view.
The RDML compiler also generates a statement for each required ASI
column by preceding each column name with the four characters ASI-.
The following shows an example of this generation (the asterisk indicates
the statement the programmer specifies; the RDML compiler generates
all other statements):

*01 | NCLUDE CUST- CONTACT.
01 RDM CUST- CONTACT.
10 CUST- CONTACT.

20 CUST-NO PI C S9(05).
20 CONTACT- NAME PI C X(040).
20 CONTACT-TI TLE PI C X(040).
20 CONTACT- PHONE PI C S9(10).
10 ASI - CUST- CONTACT.
20 ASI - CUST- NO PIC X
20 ASI - CONTACT- NAMVE PIC X
20 ASI - CONTACT-TI TLE PIC X
20 ASI - CONTACT- PHONE PIC X

60 P26-8220-64

Status indicators

The following table lists the meanings of the ASI values:

ASI |Meaning

+ The column exists and a newly accessed record provided its value. This
ASI value is meaningful for GET processing only.

= The column exists and a previously accessed record provided its value.
This ASI value applies to GET processing only.

- The value for this column is null. Either the physical record field contains
the value defined as null, or no physical record exists to supply this column
value. The RDM returns spaces or zero, depending on the column’s data
type, as the column’s data. It does not return the actual null value. This ASI
value allows you to distinguish a null column from a column that actually
contains spaces. This ASI value applies only to GET requests.

C Another view has changed the value for this column. The RDM checks for
this when an UPDATE or DELETE command follows a GET command other
than GET FOR UPDATE. You can override this check by specifying
SHARED in the ALLOW clause of the access definition in the view

N The application has placed an N in the ASI to set a column to its null value
as part of an UPDATE or INSERT operation. The RDM never returns an
ASI of N.

\% The value for this column is invalid for one of two reasons:

1. The value does not meet the validation criteria defined for this column.
Refer to “Validation options” on page 41 for information on validation
criteria.

2. The column is a foreign key, and the corresponding primary key for this
value cannot be found. Refer to “Maintaining referential integrity” on
page 87 for information on foreign keys and referential integrity.

MNOTE After an INSERT or an UPDATE, C and V are the only meaningful ASls. ASls
@ — that appear after a DELETE function have no meaning.

MNOTE The ASI values plus (+) and equal (=) do not depend upon the state of the data
@ — area that maps to the row. The occurrence in the physical database of a record
e determines the ASI value. When you read another row, the value of a column
may not change, but since you have read a new physical database record, the
ASl is +. For example, if you are reading all of the branches for a region, each
time you read a branch, the ASI for the branch number column is + even though
the region number did not change. These values only have meaning on GET
RDML requests; on UPDATE, INSERT or DELETE requests, they are set to +.
Therefore, application programs should not depend on the value of these ASls.

RDM Administration Guide 61

Chapter 3 Modifying user data

Validity status indicators

Validity status indicators (VSIs) reflect the validity of a view after a RDML
command causes a read of the physical database. The RDML processor
returns the VSI value to the program in an area generated as part of the
programmer- supplied TIS-CONTROL statement (refer to the example in
“Function status indicators” on page 59). The VSI value for a function is
the same as the most serious of the ASI values the RDM returns for the
columns. The ASI values the RDM can return, in order of decreasing
seriousness, are: C,V, -, +, =. (The RDM never returns the ASI value
N.) The following table is in the same order:

|VSI |Meaning

C Another view changed a column value.
V The RDM is returning at least one invalid ASI.

- The RDM is returning no invalid ASls, but is returning at least
one missing (null) ASI.

+ The RDM is returning no invalid or missing ASls, but is
returning at least one new physical occurrence in the
database.

= This RDM function is returning no invalid ASls, missing ASlIs,
or new physical occurrences.

The VSI enables the programmer to quickly determine if any additional
processing of ASls is needed to correct invalid data or to supply missing
values.

62 P26-8220-64

A

Defining and using derived views

Derived views access base views or other derived views as sources of
data. You must define base views for derived views to access. Base
views access the physical files and specify all integrity constraints
between those files. You can build base views with DBAID or Directory
Maintenance. Then you can build on these base views to derive other
views without respecifying the integrity constraints. You can tailor derived
views for different users and impose additional security.

With the RDM reports, you can list all the base views defined for a given

schema on the Directory. See “Using the RDM reports” on page 211 for

information on RDM reports. This list of base views can help you design

derived views to fill the needs of the users. You can use DBAID to define
derived views and test them before saving them on the Directory.

You need not store base views on the Directory before creating derived
views that access them. A derived view can access an opened base
view whether that base view has been saved or not. Once a base view is
open, though not necessarily saved, it can be accessed. Therefore, you
can create both base views and derived views in a test environment, and
test them before modifying the Directory.

RDM Administration Guide 63

Chapter 4 Defining and using derived views

Defining derived views

The view definition contains the following types of statements:
¢ Column definitions
¢ Access definitions

Column definitions define each column included in the view. Access
definitions define how to access the views to obtain column values. You
can create these definitions using the DBAID utility (see “Signing on to
DBAID and RDM” on page 105 for a sample DBAID session) or through
the Directory Maintenance Access Set category using the VARIABLE
EDIT command. (Refer to the SUPRA Server PDM and Directory
Administration Guide (0S/390 & VSE), P26-2250, for instructions for
defining views with Directory Maintenance.) All column definitions must
precede the first access definition in the view definition. While the
column definitions need not be in any particular order, define the logical
keys in the order that the supplying files are accessed.

Column definition

The column definitions, entered as part of the view definition, define each
column to include in the derived view and each column’s characteristics.
You must define the column name of each column to be included in a
particular derived view.

OREQ 0 teolumn =[=] source, O
O . _ O
%NONUNIQUE}D qcolumn = [—]source1 —[=] sourcez[..] 0

ﬁUNIQUE] CONST é:w'umn =[Fl source, Hconstant

olumn =[=] source, =[q source,[..| g

MOoOoodd

64 P26-8220-64

Defining derived views

REQ O
HNONUNIQUE] KEYH

Description Optional. A qualifier specifying the characteristics of a column.

Options REQ This column is not part of the logical key.
KEY This column is part of the logical key. The logical key
is unique.

NONUNIQUE KEY This column is part of the logical key. The logical key
need not be unique.

Considerations

¢ A column with one of these qualifiers is a required column. See the
General Considerations for the effects of required columns.

¢ You can specify a maximum of nine KEY and NONUNIQUE KEY
columns in a view.

¢ If you specify KEY or NONUNIQUE KEY, you must not specify
CONST or UNIQUE CONST for this column.

RDM Administration Guide 65

Chapter 4 Defining and using derived views

[UNIQUE] CONST

Description Optional. A qualifier specifying the characteristics of a column that has
an assigned constant value. A column with this qualifier is a required
column and is part of the logical key.

Indicates that this column is required in the derived view, and the value of
the column must be equal to the given constant for the row to qualify.

Options CONST This column is part of the logical key. The logical
key need not be unique.

UNIQUE CONST This column is part of the logical key. The logical
key is unique.

Considerations
¢ If you specify CONST or UNIQUE CONST, you must supply a
constant value for the column in the definition. If you supply a
constant value for the column, you must specify CONST or UNIQUE
CONST.
¢ Al CONST and UNIQUE CONST columns are part of the logical key.
¢ CONST and UNIQUE CONST columns are not returned in the row.

¢ If you specify CONST or UNIQUE CONST, you must not specify KEY
or NONUNIQUE KEY for this column.

66 P26-8220-64

Defining derived views

column =[=]

Description Conditional. Names the access column in the view being defined, used
later in the application program.

Format 1-30 alphanumeric characters and the special characters #, -, , and $.
The first character must be alphabetic or a special character. If the first
character is a # or $, the second character must be alphabetic.

Considerations

¢ This option allows you to assign a descriptive, meaningful name to
the application.

¢ Column names need be unique only within the view.

¢ If you do not specify a column name, RDM uses the source column
name.

¢ If you specify redundant source column names, you must specify a
column name.

¢ The column and its source(s) must be from the same domain, unless

you override domain checking by coding the additional equal sign.

source;

Description Required. Indicates the name of the column being accessed in a source.

Format The name of an existing column in a view

RDM Administration Guide

67

Chapter 4 Defining and using derived views

[=]=source,[...]

Description Optional. Specifies one or more access columns, called redundant
columns, that will map to a single column in the view.

Format The name of an existing column in a view
Considerations

¢ This is a convenient method of mapping the same value to many
columns.

¢ If you specify multiple source-columns, you must specify a
column-name.

¢ If you designate the column as a KEY, REQ, CONST, or
NONUNIQUE KEY, all of the column-names you specify will have the
same constraint.

¢ RDM accesses the columns according to the order specified in the
ACCESS statements (see “Access definition” on page 72), which
does not have to be the same order specified on this statement.

¢ When using GET to retrieve a row, the values of the columns in the
view will be those of the last column accessed. The only exception is
if the column is a KEY, CONST, or NONUNIQUE KEY with the key
value given. In this case, RDM compares each redundant column
with the key value before returning the row.

¢ The columns must be from the same domain unless you specify an
override. To override the normal domain checking, include the
additional equal sign as shown:

REQ REG ON- NO = = BRANCH REG ON = REG ON-NO

68 P26-8220-64

Defining derived views

= constant

Description Conditional. Specifies the value to be assigned as a constant for this

column.
Format Specify the value as:
X'nnnnnn' Hexadecimal
nnnnNnnNnn Numeric (binary, packed, or zoned)
‘ccec’ Character

Considerations

¢ The length of the value depends on the length of the column you are
defining.

¢ The constant is required when you specify CONST.

¢ The constant must pass validity checking if the column has
associated validation.

¢ The constant cannot be the null pattern.

RDM Administration Guide 69

Chapter 4 Defining and using derived views

General considerations

¢ Any columns specified as REQ, KEY, NONUNIQUE KEY, CONST, or
UNIQUE CONST are required columns for the derived view.

¢ If a view contains two columns and one is a key and the other a
nonunique key, the view will be processed as if both were nonunique
keys. A nonunique key column makes the entire compound key
nonunique.

¢ All column definitions must precede the first access definition in the
view.

¢ Column definition statements may be in any order.
¢ Required columns restrict the number of occurrences in the view.

¢+ Depending on the command, required columns affect the operation
of RDM in these ways:

Command Effect

GET All required columns must be valid and non-null.
If not, RDM takes the NOT FOUND option on
direct GETs. For sweeping GETs, RDM skips the
row. If a required column is not included in a user
view, the required column must still be present,
but RDM does not return it to the program.

INSERT or All required columns must be valid and non-null.

UPDATE If a required column is not included in the user
view, RDM returns a data error.
DELETE No effect.

¢ See “Required columns” on page 39 for an example of how the REQ
option affects processing.

70 P26-8220-64

Defining derived views

Examples

¢ The column definition for this view indicates a customer-product
which may have multiple product codes for each customer.

> 0100 KEY CUSTQVER- NO
> 0200 CUSTQOVER- NAVE
> 0300 NONUNI QUE KEY PRODUCT- CODE
> 0400 PRODUCT- DESC
> 0500 PRODUCT- PRI CE

¢ This example shows the use of multiple column names.
> 0100 BRANCH = CUSTOMER- BRANCH = BRANCH NO

- With a GET, the value returned in BRANCH depends on which
column (CUSTOMER-NO or BRANCH-NO) is accessed last.
RDM does not guarantee that these two values are equal in this
case.

- An INSERT of a value into BRANCH results in the same value
being inserted into CUSTOMER-BRANCH and BRANCH-NO in
the accessed views.

- With an UPDATE, a change in BRANCH-NO updates both
CUSTOMER-BRANCH and BRANCH-NO.

> 0100 KEY BRANCH = CUSTQVER- BRANCH = BRANCH- NO = | NVO CE- BRANCH

RDM treats all three columns as keys:

- With a GET, you will retrieve only those rows that have
CUSTOMER-BRANCH, BRANCH-NO, and INVOICE-BRANCH
equal to the value given for BRANCH in the USING phrase. If
you do not supply a key value on the GET command, RDM does
not guarantee that these values are equal.

- An INSERT of a value into BRANCH results in the same value

being inserted into all three columns (CUSTOMER-BRANCH,
BRANCH-NO, and INVOICE-BRANCH).

RDM Administration Guide 71

Chapter 4 Defining and using derived views

Access definition

The access definitions determine how to get from view to view, how to
access base and derived views, and the relationships you can have
between views in your access statement. Enter access definitions after
the column definitions.

If you use the WHERE clause without the USING clause, RDM
determines the best access strategy and uses it. If you use the USING
clause, RDM performs a keyed read. If you use both the WHERE and
the USING clauses, RDM performs a keyed read and applies the
additional selection criteria indicated by the WHERE clause.

ACCESS view-name [ONCE]
[USING (valuey,value,...)]
[WHERE column;=[=]value; AND columnj,=[=]value;...]
[GIVING column; column, ...]

ONSERTO REP H

O
FALLOW
T ELETEQ AJPDATER:

view-name
Description Required. Identifies the base or derived view to access.
Format Must be the name of an existing view.
ONCE
Description Optional. Indicates that you want to retrieve only the first row.
72 P26-8220-64

Defining derived views

[USING (valuej,value;...)]

Description Optional. Indicates that a logical keyed read using specified value(s) is to
be done on the view.

Format Each value is a constant or an existing column.

Considerations
¢

RDM Administration Guide

In an access definition accessing a derived view, you must use the

WHERE clause, the USING clause, or both. In an access definition
accessing a base view, Cincom recommends you use the WHERE

clause, the USING clause, or both.

The value(s) you specify must correspond to the logical key of the
accessed view. When specifying several values, you may omit
values from the right hand side of the group of values. Subdefinitions
of logical keys are not allowed. For example, if you had the following
base view, VIEW-A, defined:

VI EW A

KEY ATTRL
KEY ATTR2
KEY ATTR3

The following derived view, accessing VIEW-A, is valid:

VI EW B
KEY ATTR-A
KEY ATTR-B
KEY ATTR-C
ACCESS VI EW A
USI NG (ATTR-A, ATTR- B)

However, the following view, VIEW-C, is not valid because values
were omitted and they do not map to logical key columns, from left to
right:

VI EW C

KEY ATTR-A

KEY ATTR-B

KEY ATTR-C

ACCESS VI EW A

USI NG (ATTR- A, , ATTR- B)

To correct VIEW-C, exchange the USING clause for the following
WHERE clause:

WHERE (ATTRL = ATTR-A)

AND (ATTR3 = ATTR-B)
or:

USI NG (ATTR- A)
WHERE (ATTR3 = ATTR- B)

If the view that you are accessing only has one logical key column,
you may omit the parentheses.

73

Chapter 4 Defining and using derived views

[WHERE column;=[=]value; AND column,=[=]value,...]

Description Optional. Specifies the desired values for certain columns in this view.
RDM selects only those rows with the specified values.

Format column Must be the name of a column in the view named in the

ACCESS statement.

value The name of a column in this view or a previously

Considerations
’

accessed view, a constant, or a logical key.

In an access definition accessing a derived view, you must use the

WHERE clause, the USING clause, or both. In an access definition
accessing a base view, Cincom recommends you use the WHERE

clause, the USING clause, or both.

Each column and its specified comparison value must belong to the
same domain unless you override domain checking with the extra
equal sign.

Use RDM statistics to measure the performance of the derived view.
Refer to the description of the DBAID command STATS in “Managing
views with the DBAID commands” on page 133 for information on
using statistics.

[GIVING columny column, ...]

Description Optional. Overrides the normal data movement.

Format The keyword GIVING followed by one or more column names as defined
by the column definitions

Considerations
¢

74

The GIVING clause allows you to access a view more than once and
retrieve selected columns during each access. For each view that
occurs on more than one ACCESS statement and contains needed
columns, you can specify which columns to fill on which access of the
view.

If you omit column names on the GIVING clause, RDM uses the view
for access only.

If you omit this clause, all columns derived from accessed columns in
the accessed view that have not been supplied by some previous
ACCESS statement are filled with values using this ACCESS
statement.

P26-8220-64

Defining derived views

ONS ERT OMREP

ALLOW eL eTeHHP ATEH

Description Optional. Specifies what RDML actions you want to allow on the
accessed view.

Format Any combination is valid, for example:
ALLOW INSERT DELETE Allows inserts and deletes but not updates.
ALLOW UPDATE Allows updates but not inserts or deletes.
Options ALL Allows all three types of data modification.

INSERT Allows row inserts on the view.
INS

DELETE Allows row deletes from the view.
DEL

UPDATE Allows row updates or replacements on the view.
UPD
REP

Considerations

¢+ RDM always allows read access to the accessed view. If you omit
the ALLOW clause, RDM allows only read access to the view.

¢+ RDM allows modification of accessed data only if each relevant
access definition at each view level allows that type of modification.
For example, if the relevant access definition in the referencing
derived view specifies ALLOW ALL, and the relevant access
definition in the accessed base view specifies ALLOW UPDATE,
RDM allows updates but not inserts or deletes on the indicated data.

RDM Administration Guide 75

Chapter 4 Defining and using derived views

Examples of derived view definitions

This section presents a sample database and shows how to define and
use derived views to access the sample database.

Base relations

The example conceptual schema contains five relations: BRANCH,
CUSTOMER, PRODUCT, REGION, and STOCK. These relations
contain the columns and values shown. The examples in the rest of this
chapter are built on these relations.

Relation: REGION (REGN) Type: Independent Entity

Columns |Primary key |Foreign relation
REGION-NO Y
REGION-NAME

Relation: BRANCH (BRAN) Type: Dependent Entity

Columns |Primary key |Foreign relation
BRANCH-NO Y

BRANCH-NAME

BRANCH-ADDR

BRANCH-CITY

BRANCH-STATE

BRANCH-ZIPCODE

BRANCH-REGION REGION
BRANCH-DEL-ROUTE

BRANCH-SLS-QUOTA

BRANCH-STF-QUOTA

76 P26-8220-64

Examples of derived view definitions

Relation: STOCK (STCK) Type: Relationship

|Co|umns |Primary key |Foreign relation
STOCK-BRANCH Y BRANCH
STOCK-PRODUCT Y PRODUCT
STOCK-QNTY

STOCK-BIN-LOC
STOCK-YTD-SALES

Relation: CUSTOMER (CUST)

Type: Independent Entity

|Co|umns

|Primary key

|F0reign relation

CUSTOMER-NO Y
CUSTOMER-NAME
CUSTOMER-ADDR
CUSTOMER-CITY
CUSTOMER-STATE
CUSTOMER-ZIPCODE
CUSTOMER-CLASS
CUSTOMER-CR-CODE
CUSTOMER-CR-LIM
CUSTOMER-BRANCH

BRANCH

Relation: PRODUCT (PROD) Type: Independent Entity

|Co|umns

|Primary key

|F0reign relation

PRODUCT-CODE Y
PRODUCT-DESC
PRODUCT-WH-OQNTY
PRODUCT-PRICE
PRODUCT-GROUP

RDM Administration Guide

77

Chapter 4 Defining and using derived views

Base views

Base views that represent “base relations” describe conceptual schema
information. The DBA can define base views with the DBAID utility (see
“Maintaining the RDM” on page 103 and “Managing views with the DBAID
commands” on page 133) or Directory Maintenance. The access sets for
the base views for the example database are shown following. Using
these access statements, RDM optimizes the physical navigation path.

¢

78

V V. V V V V

V V. V V V V V V V V V V V V V V V V V

Base View: REGION

View Text:

DEFI NE REG ON

0100 KEY REG ON- NO

0200 REG ON- NAME

0300 ACCESS E$RG WHERE REG ON-NO = REG ON-NO ALLOW ALL

* To restrict deletions of REG ONS that contain branches, code:
0500 ACCESS E$BR WHERE BRANCH REG ON = REG ON- NO

Base View: BRANCH

View Text:

DEFI NE REG ON

0100 KEY BRANCH- NO

0200 BRANCH- NANE

0300 REQ BRANCH REG ON = BRANCH REG ON = REG ON- NO
0400 BRANCH- SLS- QUOTA
0500 BRANCH- STF- QUOTA
0600 DEL- ROUTE

0700 BRANCH- ADDR

0800 BRANCH- CI TY

0900 BRANCH- STATE
1000 BRANCH- ZI PCODE

1100 ACCESS E$BR WHERE BRANCH NO = BRANCH NO ALLOW ALL

* To verify that BRANCH REG ON contains a valid region on

* | NSERTs and UPDATEs, code:

1200 ACCESS E$RG ONCE WHERE REG ON- NO = BRANCH REG ON

* To restrict deletions of branches containing custoners, code:
1300 ACCESS E$CU WHERE CUSTOMER- BRANCH = BRANCH NO

* To restrict deletions of branches that have stock, code:

1400 ACCESS E$SK WHERE STOCK- BRANCH = BRANCH NO

P26-8220-64

Examples of derived view definitions

¢ Base View: STOCK

View Text:

DEFI NE STOCK

0100 KEY STOCK- BRANCH = STOCK- BRANCH = BRANCH NO

0200 KEY STOCK- PRODUCT = STOCK- PRODUCT = PRODUCT- CODE

0300 STOCK- QNTY

0400 STOCK- BI N- LOC

0500 STOCK- YTD- SLS

0600 ACCESS E$SK WHERE STOCK- BRANCH = STOCK- BRANCH

0700 AND STOCK- PRODUCT = STOCK- PRODUCT ALLOW ALL

* To verify that STOCK- BRANCH contains a valid branch on

* | NSERTs, code:

0800 ACCESS E$BR ONCE WHERE BRANCH NO = STOCK- BRANCH

* To verify that STOCK- PRODUCT contains a valid product code
* on | NSERTs, code:

0900 ACCESS E$PD ONCE WHERE PRODUCT- CODE = STOCK- PRODUCT

V V. V V V V V V V V V V V V

¢ Base View: CUSTOMER

View Text:
> DEFI NE CUSTOMVER
> 0100 KEY CUSTOVER- NO
> 0200 CUSTOVER- CR- CODE
> 0300 CUSTOVER- CR- LI M
> 0400 REQ CUSTOVER- BRANCH = CUSTOMER- BRANCH = BRANCH NO
> 0500 CUSTOVER- ADDR
> 0600 CUSTOVER- NAVE
> 0700 CUSTOVER- CLASS
> 0800 ACCESS E$CU WHERE CUSTOMER- NO = CUSTOMER- NO
> 0900 ALLOW ALL
> * To verify that CUSTOVER- BRANCH contains a valid branch on
> * | NSERTs and UPDATEs, code:
> 1000 ACCESS E$BR ONCE WHERE BRANCH NO = CUSTOMVER- BRANCH

RDM Administration Guide 79

Chapter 4 Defining and using derived views

¢ Base View: PRODUCT

* To restrict deletions of products that contain stock, code:
0700 ACCESS E$SK WHERE STOCK- PRODUCT = PRODUCT- CODE

View Text:
> DEFI NE PRODUCT
> 0100 KEY PRCDUCT- CODE
> 0200 PRODUCT- WH QNTY
> 0300 PRODUCT- PRI CE
> 0400 PRODUCT- DESC
> 0500 ACCESS E$PD WHERE PRODUCT- CODE = PRODUCT- CODE
> 0600 ALLOW ALL
>
>

Derived views

You can use the base views from the previous illustration to derive other
views. The derived views may contain columns from the base views and
columns from several other views, and may have different update
options. The following three examples show increasing complexity when
defining derived view access definitions.

Example 1. This example creates a new view which is a subset of the
BRANCH base view, and excludes the BRANCH-SLS-QUOTA and
BRANCH-STF-QUOTA columns.

Derived View: BRANCH-SUBSET

View Text:
> DEFI NE BRANCH SUBSET
> 0100 KEY BRANCH- NO
> 0200 BRANCH NAMVE
> 0300 REQ BRANCH REG ON
> 0400 BRANCH- DEL- ROUTE
> 0500 BRANCH- ADDR
> 0600 BRANCH- CI TY
> 0700 BRANCH- STATE
> 0800 BRANCH- ZI PCCDE
> 1000 ACCESS BRANCH WHERE BRANCH NO = BRANCH NO
> 1100 ALLOW UPDATE

80 P26-8220-64

Examples of derived view definitions

The following figure shows the base view and the number of columns it
contains, and the derived view including the number of columns used
from the base view. It also shows the update options specified for the
derived view.

Base View Derived View
BRANCH BRANCH-SUBJECT
10 columns = 8 columns update only

This view can be used by users restricted from seeing the two quota
fields. When defining this view, you do not have to enter all of the access
statements that provide the integrity constraints, nor must you rewrite this
view if the physical file for the BRANCH relation were broken apart or put
into another file with a different name.

The KEY indicator is required to indicate the column RDM is to use as the
logical key for this view. BRANCH-REGION does not have to be REQ in
this view, but the base view only returns and accepts non-null, valid data
for the column. Also, if you use REQ, you can validate the required
column in the derived view, possibly avoiding the need for restoring the
database.

RDM Administration Guide 81

Chapter 4 Defining and using derived views

82

Example 2. The process becomes more complex when using several
base views to build a single derived view. This example combines the
REGION and BRANCH views into a composite, listing the branches
within a region.

Derived View: BRANCHES-IN-REGION

View Text:
> DEFI NE BRANCHES- | N- REG ON

> 0100 KEY REG ON- NO

> 0200 REG ON- NAVE

> 0300 KEY BRANCH- NO

> 0400 BRANCH- NAVE

> 0500 ACCESS REG ON WHERE REG ON-NO = REG ON- NO

> 0600 ACCESS BRANCH WHERE BRANCH- REG ON = REG ON-NO

The following figure shows the base views and the number of columns in
each, and the derived view including the number of columns used from
each base view. It also shows the updating options allowed for the

derived view.
Base Views Derived View
BRANCH BRANCH-IN-REGION
10 columns ™ 2 columns read only
REGION
2 columns 2 columns read only

In addition to using two views to create a third view, this example
changes the updating options for the REGION and BRANCH views.

Even though REGION and BRANCH are updateable, the
BRANCHES-IN-REGION view is read only. When accessing a base view
with a derived view, you can make view update capability more

restrictive, but not less restrictive. For example, if the BRANCH base
view did not have an ALLOW statement in its access set, it would not
allow updates regardless of the ALLOW statements coded on the derived
views using it.

P26-8220-64

Examples of derived view definitions

Example 3. This example lists all the products in stock in a region. The
derived view accesses four base views for each row, and allows the user
to perform different updating options on several of the base views. The
following figure shows the base views and the number of columns in
each, the derived view including the number of columns used from each
base view, and the updating options specified.

Derived View: PRODUCTS-IN-REGION

View Text:
DEFI NE PRODUCTS- | N REG ON

\%

> 0100 KEY REG ON- NO

> 0200 REG ON- NAVE

> 0300 KEY BRANCH- NO

> 0400 BRANCH- NAVE

> 0500 KEY STOCK- PRODUCT

> 0600 PRODUCT- DESC

> 0700 ACCESS REG ON WHERE REG ON- NO = REG ON-NO

> 0800 ALLOW UPDATE DELETE

> 0900 ACCESS BRANCH WHERE BRANCH- REG ON = REG ON-NO

> 1000 ALLOW ALL

> 1100 ACCESS STOCK WHERE STOCK- BRANCH = BRANCH- NO AND
> 1200 STOCK- PRODUCT = STOCK- PRODUCT
> 1300 ALLOW ALL

> 1400 ACCESS PRODUCT WHERE PRODUCT- CODE = STOCK- PRODUCT

RDM Administration Guide 83

Chapter 4 Defining and using derived views

Base Views

REGION

Derived View

2 columns

BRANCH-IN-REGION

BRANCH

10 columns

=2 columns update and
delete options

STOCK

5 columns

PRODUCT

4 columns

84

»2 Columns all update
options

=% column all update
options

1 column read only

P26-8220-64

Processing derived views

Processing derived views

Before you can use the RDML commands GET, INSERT, UPDATE, and
DELETE, the derived view must open the base view. Applications do not
explicitly open a base view; it is opened on first use. This may require
parsing the view definition, reading a bound version of the view, or finding
the view in the global view area. In any case, the view’s internal data
structure must be provided to execute the RDML commands. When
using derived views, opening a derived view results in opening one or
more base views.

For example, when you open the PRODUCTS-IN-REGION derived view,
the REGION, BRANCH, STOCK, and PRODUCT base views are also
opened. In combination, these views can affect every file in your physical
database. After you open all of the views, you can process the RDML
commands.

Processing the GET command

When you issue a GET for the BRANCHES-IN-REGION view (see
example 2 in “Derived views” on page 80), RDM issues a GET for the
REGION base view which causes a request to the E$RG file. If this
operation returns data for the REGION base view, RDM issues a GET for
the BRANCH base view. The second GET results in a sweep of the
E$BR file searching for records with the correct region number. The
following figure shows the processing sequence.

BRANCHES-IN-REGION REGN
DATA
1st SET
GET, REGION
PDM
2nd < >
GET. BRAN
BRANCH DATA
SET

RDM Administration Guide 85

Chapter 4 Defining and using derived views

Processing the INSERT command

This example uses the PRODUCTS-IN-REGION derived view to insert a
new product into the stock of a branch in a given region.

Derived View: PRODUCTS-IN-REGION

View Text:
> DEFI NE PRODUCTS- | N- REG ON
> 0100 KEY REG ON- NO
> 0200 REG ON- NAMVE
> 0300 KEY BRANCH- NO
> 0500 BRANCH NAMVE
> 0600 KEY STOCK- PRODUCT
> 0700 PRODUCT- DESC
> 0800 ACCESS REG ON ALLOW UPDATE DELETE
> 0900 ACCESS BRANCH WHERE BRANCH REG ON = REG ON- NO
> 1000 ALLOW ALL
> 1100 ACCESS STOCK WHERE STOCK- BRANCH = BRANCH NO
> 1200 ALLOW ALL
> 1300 ACCESS PRODUCT ONCE WHERE PRODUCT- CODE = STOCK- PRODUCT

Because the access statements containing the REGION and PRODUCT
views do not allow INSERT, the REGION-NO and STOCK-PRODUCT
values must exist in the database before the INSERT can succeed. This
view does allow for the insertion of new branches and stock into a branch
without any restriction. The only reason to include the PRODUCT
relation in this view is to provide the PRODUCT-DESC field. The integrity
constraint between the STOCK and PRODUCT relations (no
STOCK-PRODUCT number allowed which is not already in PRODUCT)
is already defined in the base views.

86 P26-8220-64

Maintaining referential integrity

Referential integrity ensures that two pieces of data representing the
same fact do not become inconsistent. You can set up your base views
to maintain referential integrity. This chapter describes referential
integrity using the following terms:

¢ Foreign key. A data field (a column or combination of columns) in
one relation that can contain only values found in the primary key of
another relation.

¢ Primary key. A data field (a column or combination of columns) that
uniquely identifies a row in a relation. A primary key may have
multiple foreign keys associated with it.

¢ The source relation. A file or relation that contains the foreign key
as a data field and whose records refer to primary key values in
another relation.

¢ Thetarget relation. A file or relation that contains the primary key
values that match the foreign key values in the source relation.

The terms source relation and target relation are relative and only
express the relationship between two relations at a time.

The following figure shows the relationship between a source relation and
a target relation. Values in foreign-key-a in the source relation must first
exist in primary-key-a in the target relation.

RDM Administration Guide 87

Chapter 5 Maintaining referential integrity

Target relation:
|

. I
primary-key-a |
I

Source relation:
T

I
primary-key-b : - : foreign-key
I I

The examples in this chapter showing how RDM maintains referential
integrity use the relations shown in the following figure.

REGN BRAN CUST
Pkey REGION-NO €4—prkey|] BRANCH-NO < CUSTOMER-NO
REGION-NAME BRANCH-NAME CUSTOMER-NAME
BRANCH-ADDR CUSTOMER-ADDR
BRANCH-CITY CUSTOMER-CITY
BRANCH-STATE CUSTOMER-STATE
rkey| BRANCH-REGION Fkey | CUSTOMER-BRANCH

These relations have the following foreign keys:

¢ CUSTOMER-BRANCH is a foreign key from CUST to BRAN. E$CU
is the source file. E$BR is the target file.

¢ BRANCH-REGION is a foreign key from BRAN to REGN. E$BR is
the source file. E$RG is the target file.

88 P26-8220-64

Integrity rules and checking

Integrity rules and checking

RDM supports the following referential integrity rules:

¢

¢

A foreign key value must exist in the target relation as a primary key.
A primary key value must exist for each foreign key value in a source
relation.

Null values are allowed for a foreign key.

RDM checks for referential integrity in the following ways:

¢

RDM Administration Guide

Foreign key value integrity. When you insert or update a record
containing a foreign key, the foreign key value must point to a valid
primary key in the target relation or must be null. This operation is
bypassed if the foreign key is null. This rule also applies if the foreign
key consists of several key parts. RDM performs INSERT or
UPDATE integrity only if none of the key parts is null.

Deletion integrity. RDM does not permit a record to be deleted
unless you first delete or nullify all foreign keys. This means that you
cannot delete a primary key unless you also delete or nullify records
in a source relation that contain the key value in a foreign key.

89

Chapter 5 Maintaining referential integrity

Foreign key value integrity

90

To enforce foreign key value integrity, define the foreign key in the base
view. You may define a required foreign key or a foreign key that allows
nulls. To define a foreign key, you must:

¢+ Make the foreign key required or identified by FKEY and redundant to
the primary key in the target relation. For example:

REQ REG ON- NO = BRANCH- REG ON = REG O\-NO
or
FKEY REG ON-NO = BRANCH- REG ON = REG ON-NO

¢ Access the target relation through its primary key by using the foreign
key value from a source relation. For example:

ACCESS E$BR ALLOW | NSERT UPDATE
ACCESS E$RG ONCE WHERE REG ON- NO = BRANCH REG ON

If you use FKEY, BRANCH-REGION must be valid or null. If you use
REQ or any qualifier other than FKEY, BRANCH-REGION (the foreign
key) must be valid and non-null.

The rules for defining a foreign key are:

¢ The foreign key may consist of one or more fields. The parts of the
foreign key do not have to be contiguous in the source file. The
foreign key parts must all come from the same physical file.

¢ You must use all the parts of the foreign key to access the target
relation through its primary key. The foreign key parts must provide
the full primary key. The source relation has a one-to-one or
many-to-one relationship with the target relation. You must not
specify additional selection criteria (using the WHERE clause) on any
columns in the target relation.

¢ In the column definition for each column of the foreign key, the
column must have a qualifier (REQ, FKEY, or other) and must be
made redundant with the equivalent part of the primary key.

¢ Express all integrity constraints in base views. You must not use the
FKEY qualifier in derived views. Refer to the SUPRA Server PDM
RDM PDM Support Supplement (OS/390 & VSE), P26-8221, or the
SUPRA Server PDM RDM VSAM Support Supplement (OS/390 &
VSE), P26-8222, for information on coding base views.

NOTE

A foreign key defined with REQ cannot be null.

P26-8220-64

Foreign key value integrity

Insertion integrity

When you attempt an insert on a relation that contains a foreign key,
RDM ensures that after the insert, the foreign key points to a valid
primary key in the target relation or that the foreign key is null. A foreign
key can be null only if you specify FKEY in its column definition. If you
insert a non-null foreign key value and the primary key in the target
relation does not exist, you can have RDM perform one of two actions:

¢ Reject the insert. You do this by not coding ALLOW INSERT or
ALLOW ALL in the access definition for the target relation. (In these
examples, E$CU is the source; E$BR is the target.) RDM returns a
column status indicator (ASI) of V for the foreign key column(s) and
returns a function status indicator (FSI) of D or X. (See “Modifying
user data” on page 49 for explanations of FSI values.) For example:

0100 KEY CUSTOMER- NO

0200 FKEY BRANCH NO = CUSTOMVER- BRANCH = BRANCH- NO

0300 ACCESS E$CU

0400 ALLOW | NSERT

0500 ACCESS E$BR ONCE WHERE BRANCH-NO = CUSTOMER- BRANCH

vV V. V V V

¢ Automatically insert the primary key in the target relation. You do this
by coding ALLOW INSERT or ALLOW ALL in the access definition
for the target relation. For example:

> 0100 KEY CUSTQVER- NO

> 0200 FKEY CUSTQVER- BRANCH = CUSTOMER- BRANCH = BRANCH- NO
> 0300 ACCESS E$CU

> 0400 ALLOW ALL

> 0500 ACCESS E$BR ONCE WHERE BRANCH- NO = CUSTOVER- BRANCH

> 0600 ALLOW | NSERT

RDM Administration Guide 91

Chapter 5 Maintaining referential integrity

92

If you have automatic insert of a new primary key, you can require
validation of another foreign key in the automatically added row. In this
case, you must also define the second foreign key. For example:

> 0100 KEY CUSTOMVER- NO

> 0200 FKEY CUSTOVER- BRANCH = CUSTOMER- BRANCH = BRANCH- NO
> 0300 FKEY REGQ ON-NO = BRANCH REG ON = REG ON- NO

> 0400 ACCESS E$CU

> 0500 ALLOW ALL

> 0600 ACCESS E$BR ONCE WHERE BRANCH NO = CUSTOMER- BRANCH

> 0700 ALLOW | NSERT

> 0800 ACCESS E$RG ONCE WHERE REG ON- NO = BRANCH REG ON

If you insert a customer record with a BRANCH-NO that does not exist,
RDM inserts a branch record. However, before inserting the branch,
RDM checks that REGION-NO points to an existing region record. If not,
the insert fails. By placing ALLOW INSERT on the region relation, you
can also make RDM perform automatic inserts on the region relation.

You can cause a foreign key to be null with an INSERT or UPDATE
either by placing an N into the ASI for the foreign key column(s) or by
supplying the actual null value; RDM does not perform INSERT
referential integrity in this case as primary keys cannot be null. You can
have a null foreign key only if you specify FKEY in the column definition in
the view definition.

NOTE

Cincom does not recommend inserting the actual null value because the
application is then dependent on the null value.

P26-8220-64

Foreign key value integrity

Update integrity

When you update a foreign key, RDM ensures that after the update, the
foreign keys point to a valid primary key in the target relation or that the
foreign key is null. If you update the foreign key value to a non-null value
and the primary key in the target relation does not exist, you can have
RDM perform one of two actions:

¢

Reject the update. You do this by coding neither ALLOW INSERT
nor ALLOW ALL in the access definition for the target relation. RDM
returns a column status indicator (ASI) of V for the foreign key
column(s) and returns a function status indicator (FSI) of D or X.
(See “Modifying user data” on page 49 for explanations of FSI
values.) For example:

V V. V V V

0100 KEY CUSTOMVER- NO

0200 FKEY CUSTOVER- BRANCH = CUSTOMER- BRANCH = BRANCH- NO
0300 ACCESS E$CU

0400 ALLOW UPDATE

0500 ACCESS E$BR ONCE WHERE BRANCH NO = CUSTOMER- BRANCH

Automatically insert the primary key in the target relation. You do this
by coding ALLOW INSERT or ALLOW ALL for the target relation.

For example:
> 0100 KEY CUSTOMER- NO
> 0200 FKEY CUSTOMVER- BRANCH = CUSTOMER- BRANCH = BRANCH- NO
> 0300 ACCESS E$CU
> 0400 ALLOW UPDATE
> 0500 ACCESS E$BR WHERE BRANCH NO = CUSTOVER- BRANCH
> 0600 ALLOW | NSERT

If the view defines other foreign keys in the automatically inserted target
relation, then insert integrity rules apply on the insertion. For example:

0100 KEY CUSTQVER- NO

RDM Administration Guide

>

vV V. V V V V V

0200 REQ BRANCH REG ON = BRANCH- REG ON = REG O\-NO
0300 REQ CUSTQOVER- BRANCH = CUSTOMER- BRANCH = BRANCH- NO
0400 ACCESS E$CU

0500 ALLOW | NSERT

0600 ACCESS E$BR ONCE WHERE BRANCH- NO = CUSTOVER- BRANCH
0700 ALLOW | NSERT UPDATE

0800 ACCESS E$RG ONCE WHERE REG ON- NO = BRANCH- REG ON

93

Chapter 5 Maintaining referential integrity

You can also specify updating on the target relation. For example, in the
following view you could update both CUSTOMER-NAME and
BRANCH-NAME. You could not update CUST-NO because itis a
primary key, and you cannot update primary keys.

> 0100 KEY CUSTQVER- NO

> 0200 CUSTQOVER- NAVE

> 0300 BRANCH- NAVE

> 0400 REQ BRANCH- NO = CUSTQVER- BRANCH = BRANCH- NO
> 0500 ACCESS E$CU

> 0600 ALLOW UPDATE

> 0700 ACCESS E$BR WHERE BRANCH- NO = CUSTOMER- BRANCH
> 0800 ALLOW UPDATE

In this example, if you update the foreign key field BRANCH-NO, the
update processing positions the branch file on the record pointed to by
the new foreign key value. This means that any update to
BRANCH-NAME would apply to the branch record the new foreign key
value points to, not the BRAN record retrieved by the GET before the
update. Use care if you allow updating on both the source relation and
the target relation.

You can allow both INSERTs and UPDATEs for the target relation. This
means RDM can update the target relation if the primary key already
exists or insert the primary key if it does not exist.

You can cause a foreign key to be null with an INSERT or UPDATE
either by placing an N into the ASI for the foreign key column(s) or by
supplying the literal null value; RDM does not perform INSERT referential
integrity in this case as primary keys cannot be null. You can have a null
foreign key only if you specify FKEY in the column definition in the view
definition.

NOTE Cincom recommends using an N in the ASI rather than supplying the
£ — literal null value. N in the ASI is independent of the column’s data type
g— and independent of the column’s defined null value, if any.

94 P26-8220-64

Foreign key value integrity

GET processing

If a foreign key is defined as required and redundant, a GET RDML
command must retrieve data from both the source relation and the target
relation. This means that if an existing foreign key in the database is not
valid, a view with the field defined as a foreign key is unable to retrieve
the bad record. RDM returns an “occurrence not found” message
because required data cannot be retrieved from the target relation; that
is, the source foreign-key and the target primary-key must have the same
value.

In the case of a null foreign key, RDM does not perform a GET on the
target relation because a null primary key is not allowed.

When selecting with key values, always issue the first GET command in
this manner:

GET FIRST * USI NG val ue-1

Issue any subsequent GETs with the same key value in this manner:
GET NEXT * USI NG val ue-1

Whenever the selection value changes, issue the GET command in this
manner:

GET FIRST * USI NG val ue-2
When you use other positional qualifiers with GET, such as SAME,
PRIOR, or LAST, you may get different results for different underlying

physical file types. Also, some positional keywords are not legal for some
physical file types.

RDM Administration Guide 95

Chapter 5 Maintaining referential integrity

96

Deletion integrity

RDM does not allow you to delete a record unless you first delete or
nullify all foreign keys. This means that you cannot delete a primary key
if records containing foreign keys with the same value exist. To define
delete referential integrity, you must access the source relation through
its foreign key using the full primary key. For example:

> 1000 ACCESS E$RG WHERE REG ON-NO = REG ON-NO

> 1100 ALLOW DELETE

> 1200 ACCESS E$BR WHERE BRANCH REG ON = REG ON-NO
If the foreign key consists of multiple parts, you must access the source
relation using all its parts. For example:

> 1000 ACCESS E$RG WHERE REG ON- NO- SUB1 = REG ON- NO- SUB1

> 1100 AND REG ON-NO-SUB2 = REG ON- NO- SUB2

> 1200 AND REG ON-NO- SUB3 = REG ON- NO- SUB3

> 1300 ALLOW DELETE

> 1400 ACCESS E$BR WHERE BRANCH- REG ON- SUB1 = REG ON- NO- SUB1
> 1500 AND BRANCH- REG ON- SUB2 = REG ON- NO- SUB2

> 1600 AND BRANCH- REG ON- SUB3 = REG ON-NO- SUB3

You must not supply additional selection criteria on the WHERE clause
for data fields in the source relation because RDM would use this
additional criteria when checking the source relation.

NOTE

For performance reasons, Cincom recommends that you index the
foreign key. If the foreign key has multiple parts, include all the parts in
the secondary key. An index is important because the source relation is
not usually accessed through its primary key. If you try to delete a
primary key, and foreign keys of the same value still exist in the source
relation, you can have RDM perform one of three actions:

¢ Delete the referencing records (Cascade delete). Do this by coding
ALLOW DELETE in the access definition for the source relation. If
no attributes come from the source relation, RDM deletes all
occurrences of the foreign key in the source relation. If attributes
come from the source relation, RDM deletes only one occurrence in
the source relation. RDM deletes the primary key in the target
relation when the delete causes the deletion of the last referencing
record.

When multiple relations depend on the source relations, RDM
performs a cascade delete on all specified relations and leaves the
source record if any “restrict” records exist.

¢+ Reject the delete (Restrict delete). Do this by not coding ALLOW
DELETE in the access definition for the source relation.

¢ Nullify the referencing foreign keys (Nullify delete) by specifying
ALLOW UPDATE in the access definition for the source relation.

P26-8220-64

Foreign key value integrity

To enforce referential integrity during a delete operation, use one of the
following options:

¢ Cascade delete
¢ Restrict delete

¢ Nullify delete

NOTE Cincom does not recommend that you specify Cascade delete or Nullify

delete when the target relation and the source relation reside on different

2 physical platforms (the source relation represents a SUPRA PDM file and
the ref relation represents a native KSDS VSAM file). A delete operation
across platforms may not be recoverable.

Cascade delete

When you perform a delete operation on a view, you must also delete all
referencing rows (based on the foreign key). The following is an example
of a cascade delete:
> 1000 ACCESS E$RG WHERE REG ON- NO REG ON- NO ALLOW DELETE
> 1100 ACCESS E$BR WHERE BRANCH REG ON REG ON- NO ALLOW DELETE
> 1200 ACCESS E$CU WHERE CUSTOMER- BRANCH = BRANCH NO ALLOW DELETE

This example deletes a region, then all branches for the region, and all
customers for the branches being deleted.

Restrict delete

A delete operation fails if any referencing rows (based on the foreign key)
exist. The following is an example of a restrict delete:

> 1000 ACCESS REGN WHERE REG ON- NO- SUBL = REGQ ON- NO- SUB1
> 1100 AND REGQ ON- NO- SUB2 = REAQ ON- NO- SUB2
> 1200 AND REGQ ON- NO- SUB3 = REGQ ON- NO- SUB3
> 1300 ALLOW DELETE

> 1400 ACCESS BRCH WHERE BRANCH- REG ON- SUB1 = REG ON- NO- SUBL
> 1500 AND BRANCH- REA ON- SUB2 = REG ON- NO- SUB2
> 1600 AND BRANCH- REA ON- SUB3 = REG ON- NO- SUB3

RDM Administration Guide 97

Chapter 5 Maintaining referential integrity

Nullify delete

When RDM performs a delete, it deletes the primary key but nullifies the
foreign key. Follow these rules to nullify a foreign key:

¢

¢

¢

Specify ALLOW UPDATE in the access definition for the source
relation; you must not specify ALLOW DELETE for the source
relation.

Access the source relation joining on the foreign key and the primary
key from the target relation.

Ensure that the source relation supplies no columns.
Specify ALLOW DELETE for the target relation.

Set the Nulls Allowed flag for the foreign key columnto Y.

The following is an example of a base view you can use to delete the
primary key record and nullify the foreign key. In this example, you are
deleting the region and placing null values in the BRANCH-REGION
columns for the branches contained in the region. The ALLOW DELETE
indicates you may delete the region. The ALLOW UPDATE on the
Branch relation, BRAN, indicates you may nullify the BRANCH-REGION
column.

98

> 0100 KEY REG ON- NO

> 0200 REG ON- NAVE

> 0300 ACCESS E$RG WHERE REG ON-NO = REG ON- NO

> 0400 ALLOW DELETE

> 0500 ACCESS E$BR WHERE BRANCH REG ON = REG ON- NO
> 0600 ALLOW UPDATE

P26-8220-64

Referential integrity examples

Referential integrity examples

Example 1. This view does not add a branch unless the region already
exists. It does not allow updating REGION-NO in BRANCH unless the
new value points to an existing region.

> 0100 KEY BRANCH- NO

> 0200 BRANCH- ADDRESS

> 0300 BRANCH- CI TY

> 0400 BRANCH- STATE

> 0500 REQ REG ON- NO = BRANCH- REG ON = REG ON-NO

> 0600 ACCESS E$BR

> 0700 ALLOW | NSERT UPDATE

> 0800 ACCESS E$RG ONCE WHERE REG ON- NO = BRANCH REG ON

Notice that the foreign key in the BRANCH file (E$BR) is redundant with
the primary key in the REGION file (E$RG), and the REGION file is
accessed by its primary key with the foreign key value.

Example 2. This view accesses CUSTOMER (E$CU), then BRANCH
(E$BR), then REGION (E$RG). It permits updates and inserts to the
CUSTOMER file, and updates only to the BRANCH file. It allows no
updates or deletes on the REGION file.

> 0100 KEY CUSTQVER- NO

> 0200 CUSTOVER- NAVE

> 0300 REQ BRANCH- NO = CUSTQVER- BRANCH = BRANCH- NO
> 0400 BRANCH- NAVE

> 0500 REQ REG ON-NO = BRANCH- REG ON = REG ON-NO
> 0600 REG ON- NAVE

> 0700 ACCESS E$CU

> 0800 ALLOW UPDATE | NSERT

> 0900 ACCESS E$BR WHERE BRANCH- NO = CUSTOMER- BRANCH
> 1000 ALLOW UPDATE

> 1100 ACCESS E$RG WHERE REG ON-NO = BRANCH REG ON

An INSERT RDML command can insert a new customer, but to do so the
column BRANCH-NO must point to an existing branch. You can
UPDATE the customer (E$CU) and branch (E$BR) files. If you do an
update on the column BRANCH-NO, the new foreign key value must
already exist in BRANCH. Also, updating the new key value repositions
the branch file before making the update to BRANCH-NAME.

RDM Administration Guide 929

Chapter 5 Maintaining referential integrity

100

Example 3. This example shows how updating a foreign key can affect
the positioning of the subsequent target relations.

>

V V.V V V V V V V V

0100
0200
0300
0400
0500
0600
0700
0800
0900
1000
1100

KEY

REQ

REQ

ACCESS

ACCESS
ACCESS

CUSTQVER- NO

CUSTOVER- NAVE

CUSTQOVER- BRANCH = CUSTOMER- BRANCH = BRANCH- NO
BRANCH- NAVE

BRANCH REG ON = BRANCH- REG ON = REG O\-NO
REG ON- NAVE

E$CU WHERE CUSTOMER- NO = CUSTOMER- NO
ALLOW UPDATE

E$BR WHERE BRANCH NO = CUSTOMER- BRANCH
E$RG WHERE REG ON- NO = BRANCH- REG ON
ALLOW UPDATE

A GET on this example returned a row with the following column values:

CUSTQVER- NO = 11111
CUSTQOVER- NAVE = GECRGE
CUSTQVER- BRANCH = 1000
BRANCH- NAVE = BRANCH 1000
BRANCH- REG ON = 100

REG ON- NAVE = REG ON 100

If the application updated the column and you issued an RDML UPDATE
command, the result is:

CUSTOMVER- NO = 11111
CUSTOVER- NAMVE = CGEORGE W LSON
CUSTOVER- BRANCH = 5000

BRANCH- NAME = BRANCH CHANGE

BRANCH- REG ON

= 100

REGION-NAME = WESTERN REGION updates to CUSTOMER-NAME
and CUSTOMER-BRANCH are applied as indicated. However, the
changes to CUSTOMER-BRANCH cause a repositioning of the BRANCH
file to the key value of 5000.

Even though the view contains redundant foreign keys, the ALLOW
phrase on the source relation controls whether you can update a foreign
key. In the example, you cannot update BRANCH-REGION because
there is no ALLOW UPDATE on the E$BR file. Even though there is an
ALLOW UPDATE on E$RG, and REGION-NO is redundant in
BRANCH-REGION, it does not mean you can update
BRANCH-REGION.

P26-8220-64

Referential integrity examples

Example 4. This view allows deleting a region if there are no associated

branches:
> 0100 KEY REG ON- NO
> 0200 REG ON- NAVE
> 0300 ACCESS E$RG WHERE REG ON- NO = REG ON- NO
> 0400 ALLOW DELETE
> 0500 ACCESS E$BR WHERE BRANCH REG ON = REG ON- NO

Notice that the source file BRANCH (E$BR) is accessed through its
foreign key (BRANCH-REGION) using the primary key (REGION-NO).

Example 5. This view allows deleting branches, so you can delete the
region record. If no columns from the BRANCH (E$BR) file exist in the
user view, then deleting a region deletes all branches referencing the
region. If there are columns from BRANCH in the user view, the program
must delete each row by using a GET DELETE loop or by using DELETE

ALL.
> 0100 KEY REG ON- NO
> 0200 REG ON- NAVE
> 0300 ACCESS E$RG WHERE REG ON-NO = REG ON-NO
> 0400 ALLOW DELETE
> 0500 ACCESS E$BR WHERE BRANCH- REG ON = REG ON- NO
> 0600 ALLOW DELETE

RDM Administration Guide 101

Chapter 5 Maintaining referential integrity

102

Example 6. This view is an example of combining insert, update, and
delete integrity in one view. This view allows maintenance on the
BRANCH (E$BR) file. However, foreign keys restrict maintenance
operations.

0100
0200
0300
0400
0500
0600
0700
0800

*

0900

*

1000

V V. V. V V V V V V V V V

KEY

REQ
ACCESS

Access
ACCESS
Access
ACCESS

BRANCH- NO

BRANCH- NAMVE

BRANCH- ADDR

BRANCH- CI TY

BRANCH- STATE

BRANCH- REG ON = BRANCH REG ON = REGQ O\ NO
E$BR

ALLOW ALL

to ESRG is for insert integrity.

E$RG WHERE REQ ON- NO = BRANCH REQ ON
to ESCU is for delete integrity.

E$CU WHERE CUSTQOVER- BRANCH = BRANCH- NO

You cannot perform an insert on BRANCH (E$BR) unless the foreign key
value in BRANCH-REGION already exists as a key value in the REGION
(E$RG) file. You cannot update BRANCH-REGION unless the key value
already exists in the REGION file. You cannot perform a delete on
BRANCH unless you first delete all referencing records in the customer

file.

P26-8220-64

6

Maintaining the RDM

The physical and logical design of your database changes as data
requirements change. This chapter discusses changes that impact your
views and application program design, and explains how to maintain,
fine-tune, and modify your RDM system to accommodate changes and to
optimize performance.

RDM Administration Guide 103

Chapter 6 Maintaining the RDM

Defining and testing views with DBAID

104

Using the DBAID utility to experiment with the various DBAID commands
is a good way to learn how RDM works.

It is important to define and test your views to ensure they work correctly
before putting them into production use. Using DBAID, an online and
batch utility (see “Managing views with the DBAID commands” on

page 133), you can define a new view without affecting the Directory,
open the view, issue RDML commands, and examine the results. You
can then modify the view, if necessary. A base view does not need to be
defined on the Directory before a derived view can access it. A base
view need only be open (not saved) to be accessed.

You can use DBAID to perform a variety of tasks: relate views to users,
gather statistics on a view, save the view, and so on. As soon as you
save the view, it is available to application programs, unless a bound
version of the view exists (see “View binding” on page 125). You can
also take existing views from the Directory, change and test them to see
if they still work, all without affecting the views stored on the Directory.

Users other than the DBA can use a limited number of DBAID
commands. These commands allow the application programmer to use
the DBAID utility when constructing programs that use views.
Programmers can use the limited DBAID commands to see how the
views perform and to determine how to design the application based on
the data.

The identity of the signed-on user invokes the programmer’s DBAID
commands. If the user is a DBA, as defined in the Directory, then DBAID
recognizes all commands. However, if the signed-on user is not a DBA,
only the limited DBAID commands are available. The application
programmer cannot define new views or edit existing views. The
programmer can access only views that are related to the programmer’s
(user) ID in the Directory and can access only the data available through
those views.

Refer to the SUPRA Server PDM RDM COBOL Programming Guide
(OS/390 & VSE), P26-8330, or the SUPRA Server PDM RDM PL/1
Programming Guide (OS/390 & VSE), P26-8331, for more information
about the DBAID commands available to the application programmer.

The following examples illustrate a sample session of the DBAID utility in

an online environment. You can execute the DBAID utility in a batch
environment.

P26-8220-64

Defining and testing views with DBAID

Signing on to DBAID and RDM

At the sign-on screen, enter your user ID and password.

The Cincom Software Selection screen appears. Select DBAID from the
list.

Cl NCOM SOFTWARE SELECTI ON MENU nnn n

ENTER SELECTI ON | NFORVATI ON:

* TO EXECUTE W TH CURRENT USER: | D, PRESS ENTER
* TO EXECUTE W TH ALTERNATE USER-1 D, PRESS PF2/ PF14

NAME DESCRI PTI ON

1 DBAI D DBAI D

2 NORVAL NORVAL

3 SPECTRA SPECTRA

4 MANTI S MANTI S PROGRAM DEVELOPMENT

5 DI RECTRY SUPRA ONLI NE DI RECTORY MAI NTENANCE

6 I NTACTI V I NTERACTI VE SERVI CES

7 RESI GNON CHANGE USER-1 D AND PASSWORD FOR NEXT CALL
8 CONTROL C: M AND C: F PROGRAM PACKAGE

PF1/ PF13=HELP PA2/ PA1=EXI T

If you do not use the Software Selection menu, you must use the
SIGN-ON command to sign-on to RDM. The > symbolizes the system
prompt. In the following examples, any data following the > is user input.

WELCOME TO DBAID - LEVEL nnnn
> SI G\N-ON user-id password
FSI: * VSI: = MG SUCCESSFUL COWPLETION - LEVEL nnnn

NOTE

If you do not use the Software Selection menu and you sign on with a
user ID that begins with an asterisk (**PUBLIC**), you must enclose the
user ID in single quotes.

RDM Administration Guide 105

Chapter 6 Maintaining the RDM

Defining base views

This example shows the definition of a view. First, define three base
views; then define a derived view using those base views.

The first base view to define is the REGION-BASE-VIEW. The numbers
next to the prompt are line numbers used for editing in DBAID. The LIST
command tells DBAID that you want to display the newly defined view.
Using an asterisk (*) after a command is a shortcut and tells DBAID that
you want to use the most recent view-name again. An * in column one of
a line signifies that this is a comment line.

> DEFI NE REA ON- BASE- VI EW

> 0100 KEY REG ON- NO

> 0200 REG ON- NAME

> 0300 ACCESS E$RG WHERE REG ON- NO = REG ON- NO ALLOW ALL
> 0400 * RESTRI CT DELETI ON OF A REG ON THAT HAS BRANCHES
> 0500 ACCESS E$BR WHERE BRANCH REG ON = REGQ ON- NO

> LIST *

DBAID displays the view definition:
REG ON- BASE- VI EW
0100 KEY REG ON- NO
0200 REG ON- NAME
0300 ACCESS E$RG WHERE REG ON- NO = REG ON- NO ALLOW ALL
0400 * RESTRI CT DELETI ON OF A REG ON THAT HAS BRANCHES
0500 ACCESS E$BR WHERE BRANCH REG ON = REG ON- NO

To access the view, you must use the OPEN command. The FSI
indicates that the OPEN was successfully completed. The VSI message
indicates how much space was used in opening the view:

> OPEN *

FSI: * VSI: = MG 1448 BYTES USED | N OPENI NG VI EW

106 P26-8220-64

Defining and testing views with DBAID

Next, define BRANCH-BASE-VIEW:

> DEFI NE BRANCH- BASE- VI EW

> 0100 KEY BRANCH- NO

> 0200 BRANCH- NAME

> 0300 BRANCH- ADDR

> 0400 BRANCH- CI TY

> 0500 BRANCH- STATE

> 0600 BRANCH- ZI PCCDE

> 0700 BRANCH- DEL- ROUTE

> 0800 BRANCH- SLS- QUOTA

> 0900 BRANCH- STF- QUOTA

> 1000 REQ BRANCH- REG ON = BRANCH REG ON = REG ON- NO

> 1100 ACCESS E$BR WHERE BRANCH NO = BRANCH NO ALLOW ALL
> 1200 * REJECT I NSERT AND UPDATE COF BRANCH REG ON | F REG ON NOT

VALI D

1300 ACCESS E$RG ONCE WHERE REGA ON-NO = BRANCH- REG ON
1400 * REJECT DELETION OF A BRANCH THAT HAS CUSTOMERS
1500 ACCESS E$CU WHERE CUSTOMER- BRANCH = BRANCH- NO

LI ST *

vV V V V

RDM Administration Guide 107

Chapter 6 Maintaining the RDM

The LIST command on the previous screen returns the following view.
Remember to issue an OPEN command for the view.
BRANCH- BASE- VI EW
0100 KEY BRANCH NO

0200 BRANCH- NAVE

0300 BRANCH- ADDR

0400 BRANCH-CI TY

0500 BRANCH- STATE
0600 BRANCH- ZI PCODE
0700 BRANCH- DEL- ROUTE
0800 BRANCH- SLS- QUOTA
0900 BRANCH- STF- QUOTA

1000 REQ BRANCH- REG ON = BRANCH REG ON = REG ON-NO
1100 ACCESS E$BR WHERE BRANCH- NO = BRANCH NO ALLOW ALL

1200 * REJECT | NSERT AND UPDATE OF BRANCH REG ON I F REG ON NOT
VALI D

1300 ACCESS E$RG ONCE WHERE REG ON- NO = BRANCH REG ON

1400 * REJECT DELETI ON COF A BRANCH THAT HAS CUSTOMVERS

1500 ACCESS E$CU WHERE CUSTOMER- BRANCH = BRANCH NO

> COPEN *

FSI: * VSI: = MG 4344 BYTES USED I N OPENI NG VI EW

On the next screen, define the CUST-BASE-VIEW and LIST it:

> DEFI NE CUST- BASE- VI EW

> 010 KEY CUSTOMER- NO

> 020 CUSTOVER- NAMVE

> 030 CUSTOVER- ADDR

> 040 CUSTOMER- CI TY

> 050 CUSTOMVER- STATE

> 060 CUSTOVER- ZI PCODE

> 070 CUSTOVER- CLASS

> 080 CUSTOVER- CR- CODE

> 090 CUSTOMVER- CR- LI M

> 100 REQ CUSTOMER- BRANCH = CUSTOVER- BRANCH = BRANCH- NO

> 110 ACCESS E$CU WHERE CUSTOMER- NO = CUSTOMER- NO ALLOW ALL

> 120 * REJECT | NSERT AND UPDATE OF CUSTOMER- BRANCH | F BRANCH
I NVALI D

> 130 ACCESS E$BR ONCE WHERE BRANCH NO = CUSTOVER- BRANCH

> LIST *

108 P26-8220-64

Defining and testing views with DBAID

The LIST * command returns the view as entered, which must be opened
in order to use it;

RDM Administration Guide

CUST- BASE- VI EW
0010 KEY CUSTQVER- NO

0020 CUSTQOVER- NAVE
0030 CUSTQOVER- ADDR
0040 CUSTOVER-CI TY
0050 CUSTQVER- STATE
0060 CUSTQVER- ZI PCODE
0070 CUSTQVER- CLASS
0080 CUSTQVER- CR- CODE
0090 CUSTOVER- CR- LI M

0100 REQ CUSTQVER- BRANCH = CUSTOMER- BRANCH = BRANCH- NO
0110 ACCESS E$CU WHERE CUSTOVER- NO = CUSTOVER- NO ALLOW ALL

0120 * REJECT | NSERT AND UPDATE COF CUSTOMER- BRANCH | F BRANCH
I NVALI D

0130 ACCESS E$BR ONCE WHERE BRANCH NO = CUSTOMER- BRANCH
> COPEN *
FSI: * VSI: = MG 3952 BYTES USED I N COPENI NG VI EW

109

Chapter 6 Maintaining the RDM

Defining a derived view

On the next screen, design a sample derived view using the base views
from above:

DEFI NE SAMPLE- DERI VED- VI EW

010 KEY CUSTOMER-NO

020 CUSTOVER- NAME

030 KEY BRANCH NO = CUSTOMER- BRANCH = BRANCH NO

040 BRANCH- NAME

050 KEY REG ON-NO = BRANCH REG ON = REG ON-NO

060 REG ON- NAME

070 ACCESS CUST- BASE- VI EW VHERE CUSTOVER- NO = CUSTOVER- NO ALLOW
ALL

> 080 ACCESS BRANCH- BASE- VI EW WHERE BRANCH- NO = CUSTQOVER- BRANCH
> 090 ALLOW ALL

> 100 ACCESS REG ON- BASE- VI EW WHERE REG ON- NO = BRANCH- REG ON
ALLOW ALL

> LI ST *

V V. V V V V V V

The LIST * command on the screen above returns the following view:

SAMPLE- DERI VED- VI EW
0010 KEY CUSTQVER- NO

0020 CUSTQOVER- NAVE

0030 KEY BRANCH-NO = CUSTOMER- BRANCH = BRANCH- NO

0040 BRANCH- NAVE

0050 KEY REG ON-NO = BRANCH- REG ON = REG ON-NO

0060 REG ON- NAVE

OOZELACI:ESS CUST- BASE- VI EW WHERE CUSTOVER- NO = CUSTOVER- NO ALLOW
0080 ACCESS BRANCH- BASE- VI EW WHERE BRANCH- NO = CUSTOMER- BRANCH
0090 ALLOW ALL

Olg\ELACCESS REG ON- BASE- VI EW WHERE REG ON- NO = BRANCH REG ON ALLOW

110 P26-8220-64

Defining and testing views with DBAID

Retrieving records

The next screen shows how to retrieve records using the
SAMPLE-DERIVED-VIEW. First, issue the OPEN command to access
the view. DBAID returns status codes and messages and the next
prompt.

For this example, retrieve the first five records. Use the GO command to
retrieve records. (To retrieve one record at a time, use the GET
command.)

> OPEN *
FSI: * VSI: = MG 11060 BYTES USED | N OPENI NG VI EW
> @ * FOR 5
The following screen shows the five records retrieved, followed by
completion messages:
CUSTOMER-NO CUSTOMER- NAME ~ BRANCH- NO BRANCH NAME REG ON-NO REG ON- NAME

D11127 ED DI LLON 1264 FLORENCE 444 M D- ATLANTI C
PAI D PAI D THROUGH A/ R 0000 DUMWY 000 MAI' N WAREHOUSE
S70703 TI' M MARTI N 1273 BURNHAM 555 NEW ENGLAND
CASH CASH TRANSACTION 0000 DUMWY 000 MAI' N WAREHOUSE
$41197 JOHN ADAMS 1234 THE FARM 111 GREAT LAKES

FSI: * VSI: + MG SUCCESSFUL COWPLETI ON

RDM Administration Guide 111

Chapter 6 Maintaining the RDM

Inserting records

To do an INSERT using the SAMPLE-DERIVED-VIEW, enter the
INSERT command at the prompt. The example uses an * instead of the
view name. DBAID prompts you for the input. If you enter any values
longer than the field length, DBAID truncates the value.

> | NSERT *
CUSTOMVER- NO

> C12345
CUSTOVER- NAMVE
> ATLANTI S
BRANCH- NO

> 1241

BRANCH- NAME

> QAKLEY

REG ON- NO

> 222

REG ON- NAME

> SOUTH- EASTERN

When you have completed entering the record, DBAID returns a screen
showing the values you keyed in, then asks if you want to do this insert.
If you have entered an incorrect value, respond with N (no) at the prompt
and enter the correct information. In the example, respond with a Y (yes)
to complete the INSERT.

CUSTOMER- NO () Cl2345
CUSTOVER- NANVE () ATLANTIS
BRANCH NO () 1241

BRANCH- NAVE () OAKLEY

REG ON- NO () 222

REG ON- NAVE () SOUTH EASTERN
I NSERT (Y/ N)?

> Y

If you have entered any incorrect values, DBAID returns the records with
messages regarding their validity:

CUSTOMVER- NO (+) Cl2345
CUSTOVER- NAVE (+) ATLANTI S
BRANCH- NO (+) 1241

BRANCH- NAVE (+) OAKLEY

REG ON- NO (+) 222

REG ON- NAVE (+) SOUTH EASTERN

If all entries are correct, DBAID displays a successful completion
message:

FSI: * VSI: + MG SUCCESSFUL COVPLETI ON

112 P26-8220-64

Defining and testing views with DBAID

Updating a row

To update a row, first issue the GET command to access the row in the
view. In this example, you would access the first row with a key of
C12345.

> GET * USI NG C12345

DBAID displays the row; use the UPDATE command to indicate that you
want to modify the row.

CUSTOMER- NO (+) Cl2345
CUSTOVER- NANVE (+) ATLANTI'S
BRANCH NO (+) 1241

BRANCH- NAVE (+) OAKLEY

REG ON- NO (+) 222

REG ON- NAVE (+) SOUTH EASTERN
> UPDATE *

For this example, change the CUSTOMER-NAME to Atlantic. At the
system prompt, key in the new data. DBAID then prompts you for
additional changes to BRANCH and REGION. Press ENTER at any
prompts where you want to skip ahead without entering data.

CUSTOMVER- NO
CUSTOMER- NAME
> ATLANTI C
BRANCH- NO
BRANCH- NAME

>

REG ON- NO
REG ON- NAME

> DBAID displays the row again, with the change, and asks if you want to
complete the update. The FSI and VSI status codes indicate that the
request was completed successfully.

CUSTOMER- NO (+) Cl2345
CUSTOVER- NANVE (+) ATLANTIC
BRANCH NO (+) 1241

BRANCH- NAVE (+) OAKLEY

REG ON- NO (+) 222

REG ON- NAVE (+) SOUTH EASTERN
UPDATE (Y/ N) ?

> Y

FSI: * VSI: + MG SUCCESSFUL COVPLETI ON

This example applies only to online DBAID. In batch DBAID you cannot
skip fields you do not want to change in this manner. See the description
of the UPDATE command in “Managing views with the DBAID
commands” on page 133 for details.

RDM Administration Guide 113

Chapter 6 Maintaining the RDM

Modifying a view definition

To modify a view definition, first issue the RELEASE command to release
the open views. To display all views currently active in DBAID, use the
VIEWS command.

For the example, modify the SAMPLE-DERIVED-VIEW.

> RELEASE

FSI: * VSI: = MG SUCCESSFUL COVPLETI ON
> LI ST SAVPLE- DERI VED- VI EW

0010 KEY CUSTQVER- NO

0020 CUSTQVER- NAMVE

0030 KEY BRANCH- NO = CUSTQOVER- BRANCH = BRANCH- NO
0040 BRANCH- NAVE

0050 KEY REG ON-NO = BRANCH REG ON = REG ON-NO
0060 REG ON- NAME

0070 ACCESS CUST- BASE- VI EW WHERE CUSTOMER- NO = CUSTOMER- NO ALLOW ALL
0080 ACCESS BRANCH- BASE- VI EW WHERE BRANCH- NO = CUSTOMER- BRANCH

0090 ALLOW ALL

0100 ACCESS REG ON- BASE- VI EW WHERE REG ON- NO = BRANCH- REG ON ALLOW ALL

Determine which lines to change. In this example, delete line 60 and
change line 90. This will delete the REGION-NAME from the view and
restrict deletions.

> 060
> 090 ALLOW | NSERT UPDATE

The view definition has been changed. To see how the row format was
affected, issue an OPEN command to open the view, then issue a GO.

> COPEN *

FSI: * VSI: = MG 10732 BYTES USED I N CPENI NG VI EW
& * FOR 2

DBAID returns the first two rows according to the modified view.
REGION-NAME no longer appears in the table because you deleted it.

CUSTOMER-NO | CUSTOVER-NAME | BRANCH NO | BRANCH NAME | REG ON-NO
CASH | CASH TRANSACTI ON | 0000 | DUMWY | 000
E40000 | DOUG REED | 1241 | OAKLEY | 222

FSI: * VSI: + MG SUCCESSFUL COVPLETI ON

When you have finished using DBAID, use the BYE command to exit:

> BYE
DBAI D SESSI ON COWPLETE

114 P26-8220-64

Maintaining current programs and views

Maintaining current programs and views

RDM insulates application programs from many changes to the physical
database. However, as data requirements change and you modify the
database, you may need to modify your views or application programs.
These changes may require you to change your program logic and
recompile the program, or modify and rebind your views.

Two RDM reports aid you in determining the impact of changes to your
views and programs due to changes in your physical database
implementation:

¢ Views Used by Programs Report. Shows the programs that use a
particular view.

¢ Impact of Change Report. Shows the views that use a particular
physical field.

With these reports, you can determine the views or programs that may be

affected by a change. See “Using the RDM reports” on page 211 for
more information about RDM reports.

RDM Administration Guide 115

Chapter 6 Maintaining the RDM

116

The table on the following pages shows actions you may need to take if
you make file changes, physical changes, or logical changes.

Changes to files include changing a file type. Usually, RDM insulates
application programs from these types of changes while you modify and
rebind the view.

Physical changes, such as changing the characteristics of a column in a
view, may require a change to the program logic and recompilation. You
need to recompile only the programs that use the column in their user
view. You must also modify and rebind the view.

Logical changes include changing the relationships between data. For
example, changing a one-to-one relationship to a one-to-many
relationship usually requires that you change the program logic to
process the new relationship. You must also modify and rebind the view.

If the RDM eligible flag is not set to Y on the Directory for the secondary
key, an OPEN or a BIND will receive the message “Index not available to
RDM.”

If the RDM eligible flag is set to Y but the secondary key is not populated,
an OPEN or a BIND will receive the message “Secondary Key not
populated.” Adding or deleting indexes, secondary keys, or linkpaths
may change the behavior of unbound views. RDM selects the access
strategy at view open time and adding secondary keys or indexes may
alter this selection. If you want a bound view to take advantage of a
newly defined index or secondary key, you must first rebind the view.

P26-8220-64

Maintaining current programs and views

Change Re- Modify Unload/
program compile view Rebind reload
logic program defn view DB None

File changes

Add a new file X X X

KSDS file into X X X

PDM file

PDM file to a X X X

KSDS file

Combine 2 files X X X

into 1

Delete a file if X X X X X

contains field for

view

Rename file X X X

Split 1 file into X X X

several

Change a PDM X X

file type

Change a record X

type

Change the X

linkpath location

Change the X

physical key

length

Change the base X

length of a

variable record

Change the key X

position in a

parent record

Change a field X

heading

Add or remove an X

index or
secondary key

RDM Administration Guide

117

Chapter 6 Maintaining the RDM

Change Re- Modify
program compile view
logic program defn

Rebind
view

Unload/
reload
DB

None

Physical changes

Add new fields to
a record

Change Field
length

Change Field type

of decimal
places

Physical field's
location

Delete a field from
physical record if
used by view and
program X

Rename a
physical field if
field used in view
Change edit

mask/translate
table

Change null value
or nulls allowed

Change default
value

Change validation
type

Change validation
data

(Range, table
name, exit)

Change validation
table

X* X Y

X* X Y
X* X Y

* Does not apply to MANTIS programs.

118

P26-8220-64

Maintaining current programs and views

Change
program
logic

Re-
compile
program

Modify
view
defn

Rebind
view

Unload/
reload
DB

None

Logical changes

Add columns and
include in view

Add new columns
to a view

External field's
type

External field's
length

Unique key to a
nonunique

Change
relationships

Program depends
on relationship

Define a new view

Delete a field or
column

Program uses field
or column

Move a column in
a row

Rename a column

Program uses
column on Include

Reorder columns
Other changes

Installation of new
RD Service Level
Release

*

Y

RDM Administration Guide

Does not apply to MANTIS programs.
If a constant column maps to the field in question.

119

Chapter 6 Maintaining the RDM

120

Checking currentness of program

RDM has several checks to ensure that the program you are running is
current and that the user view it uses is the same as other applications in
the system. When an application program issues an RDML command,
RDM checks to see if the columns in the view, as defined in the
Directory, are the same as when you last compiled the program. If not,
RDM returns an FSI status code, and you must recompile the program.

Application systems are often composed of several separately compiled
programs that depend on common definitions of data items. These
programs call each other to perform special tasks. RDM checks on each
RDML call to make sure that the definition of the user view is the same
for each program. If you compile a program or subroutine with the same
user view name as another program or subroutine and the user view
definition does not match, RDM generates an error message. The field
list generated by the RDML compiler at compile time contains the data
used to perform this error checking.

Checking currentness of view bindings

RDM uses the bound copy of a view whenever possible. However, RDM
does not warn you if the bound view you are using is out of date. Itis up
to you to rebind your view whenever necessary. See the table under
“Maintaining current programs and views” on page 115 for a list of
reasons for rebinding a view.

P26-8220-64

Optimizing performance

Optimizing performance

This section describes techniques for optimizing your system
performance:

¢ “Global view support” on page 122 describes global view support,
which allows you to have certain views opened at system
initialization, thereby improving the performance of opening the view.

¢+ “View binding” on page 125 describes view binding, which allows you
to store an opened version of a view on the Directory, thereby
improving the performance of opening the view.

¢ ‘“Installing the RDM resident module in shared memory” on page 126
describes storing the RDM resident module in shared memory, so
that multiple applications can use the same copy and conserve
program memory.

RDM Administration Guide 121

Chapter 6 Maintaining the RDM

Global view support

Global view support allows you to have certain views opened during RDM
initialization. By doing this, you can save RDM the processing overhead
of opening views when first accessed by the application program. You
define which views are global in the Directory (see the following
example). A global view is available to all users related to that view.

You can make both base and derived views global. However, before you
make a derived view global, you should make global each view the
derived view accesses.

Batch RDM does not open global views. Global view support is available
for CICS and IMS/DC users only.

Specify which views are global using Directory Maintenance. List the
view names in the long text area for the Environment Description entity.
Put each view name on a separate line with this syntax:

GLOBAL Vi ew nane

Here is an example of an Online Directory Maintenance screen with
global views specified:

DI RECTORY MAI NTENANCE ENVDES: LONG EDI T

SCHEMA: DEMOSCHM
LAST UPDATE 11.09.16. 04/01/91 V.0001 USER THOVAS

ENTER EDI TCR

0100
0200
0300
0400
0500

GLOBAL
GLOBAL
GLOBAL
GLOBAL
GLOBAL

COMVAND: AD SEQL: BEG SEQ2/ I NCR. 100

CUSTOVERS
PRODUCTS
CUSTOVER- PRODUCTS
PRI CES

CUSTOMVER- PCS

122

Refer to the SUPRA Server PDM Directory Online User’'s Guide (O0S/390
& VSE), P26-1260, or the SUPRA Server PDM Directory Batch User’s
Guide (0OS/390 & VSE), P26-1261, for detailed instructions for specifying
global views with Directory Maintenance.

P26-8220-64

Optimizing performance

During initialization of RDM, RDM opens all global views in the system’s
memory space. For each global view, RDM displays a message on the
console in the following format:

CSI V114l GLOBAL VI EW vi ew nane
FSI: * nnnn BYTES USED | N OPENI NG VI EW

The amount of memory used to open a global view is the same as the
amount of memory used to bind the view. If the view is already bound,
you can use Directory reports to determine the memory requirements.
The total amount used is displayed in the following format:

CSIV1171 GLOBAL VIEWS OPENED; STORAGE USED IS nnnnK When
using a global view, the user view requires less memory in the heap. The
RDM user’s context is one heap plus one stack; the heap and the stack
are not contiguous, and the stack is only in storage for the duration of an
RDML command. “Setting the online RDM options with macros” on page
261 tells how to specify the numbers and sizes of heaps and stacks.
Refer to the SUPRA Server OS/390 Installation Guide, P26-0149, or the
SUPRA Server VSE Installation Guide, P26-0132 for RDM memory
requirements and usage for your operating environment. For a
discussion of the relationships between RDM parameters and other
SUPRA Server parameters, see “Configuring the RDM for your
environment” on page 225.

The amount of reduction in heap memory is the same as the amount of
memory used to open the global view. For example, suppose a user
view requires 3K to open when the view is not global. The 3K are all
allocated in the heap. When the view is made global, it requires 2K to
open during global initialization. The 2K are allocated in the global area
so when the application programmer opens the user view, only 1K are
required in the heap. If multiple users open the user view, each requires
1K in their heap. They would all share the 2K allocated in the global
area.

RDM Administration Guide 123

Chapter 6 Maintaining the RDM

124

Because global views allow you to reduce the heap size, the savings in
memory (because there are many heaps) may more than offset the
amount of memory used by global views.

Global views also reduce the processing required to open a user view
because opening the user view requires no Directory access. Even if the
view is bound, global views significantly reduce the processing required
to open the user view. For security checking, RDM keeps a table of
global views that a task has previously been allowed to open. When
opening a global view, RDM checks the table before performing directory
I/Os to validate the user’s ability to use the view. In many cases this
means that no 1/0Os are required to open a global view. This can improve
performance greatly when global views are repeatedly released and
reopened. One table is kept per task. The table contains 32 entries and
is reset at a SIGN-ON or SIGN-OFF.

You can decide which views are to be global views by determining
frequency of use and size of the views. If a view requires a relatively
large amount of memory and/or is accessed frequently, then include the
view in the global view area. Once you open a global view, it cannot be
released. You can use DBAID to create virtual copies of a global view
and open and release the copies, but this does not affect application
programs. No new definitions of views that are placed in the global area
take effect until you shut down the RDM system and reinitialize. Refer to
the SUPRA Server PDM CICS Connector Systems Programming Guide
(OS/390 & VSE), P26-7452, for information on commands that allow
RDM to be stopped and restarted without having to cycle your CICS
system.

The view you place in the global area may or may not be bound. The
bound views improve performance only during the global opens
performed during RDM initialization. They have no impact on opens
performed for application programs. Because bound views require so
much maintenance, it is usually better not to bind views that are also
global.

P26-8220-64

Optimizing performance

View binding

Binding a view means translating the view definition into a form that RDM
can use easily. The translated definition is the bound view. The bound
view is stored in addition to the view definition text.

Binding a view reduces the processing necessary on the initial access to
a view. When you open a bound view, RDM does not parse the view
definition text. Cincom suggests you use view binding only for production
systems and where the physical database is stable. This is because
bound base views must be rebound when the physical database
changes, and bound derived views must be rebound whenever the base
view changes.

You can bind views by issuing the BIND command or the SAVE
command in DBAID. Refer to “Managing views with the DBAID
commands” on page 133 for information about DBAID commands.

You can bind existing views and rebind existing bound views with the
DBAID command BIND:

¢ BIND view-name. Bind a view without saving it.
¢ BIND BOUND. Rebind all currently bound views.

¢ BIND ALL. Bind or rebind each view in the schema. The BIND ALL
command takes a long time to complete and may fill your Directory
because it creates bound copies of all your views.

If a bound version of a view is available, RDM applications always use it.
If a bound view is not available, RDM applications use the view definition
text. You can change the view definition text without affecting any
applications until you rebind the view. Only after you rebind the view
does it become available to application programs. To remove a view
definition and a view’s binding, use the DBAID command REMOVE. To
guard against errors in using this command, you can remove only views
which are also virtual views, that is, views that have been listed first.
Even after you remove a view, you still have a copy of the view as a
virtual view. You only lose this virtual view if you undefine the view (using
the UNDEFINE command) or enter BYE, terminating the DBAID session.
To keep the view, issue the SAVE command before terminating the
session.

RDM Administration Guide 125

Chapter 6 Maintaining the RDM

The DBA Report lists the time of the last binding as well as the last time
the text was updated. From this report you can determine whether the
view text differs from the text used in producing the binding. The End
User Report and the Programmer’s Report use the view definition text
instead of the view bindings. It is a good practice to rebind the view
whenever you change the view text.

The table under “Maintaining current programs and views” on page 115
shows which changes to your physical database or base views require
you to rebind your views.

Installing the RDM resident module in shared memory

You can install the major portion of RDM, the resident module
(CSVLVRES or CSVNVRES), in a shared memory area. This allows
multiple users to use the same copy of the resident module and conserve
memory.

Installation in the LPA under OS/390/XA

Under OS/390, you can install the resident modules into the linkpack area
(LPA), but the resulting memory savings may have no practical benefit.
The online resident module CSVNVRES is always loaded in extended
memory (above the 16 MB line); saving extended memory is probably not
significant. The batch resident module CSVLVRES is used in batch jobs,
where memory is probably not at a premium.

The resident modules CSVLVRES and CSVNVRES are already linked as
reentrant. To install them into the LPA, move the modules from the
SUPRA Server link library into SYS1.LPA. After your next IPL, the
modules reside in the linkpack area.

If you move CSVNVRES to the LPA in a CICS environment, you may
require an application load table (DFHALT) entry in your CICS tables,
depending on your site’s requirements.

126 P26-8220-64

Optimizing performance

Installation in the SVA under VSE

Under VSE, you can install the resident module CSVLVRES (batch) or
CSVNVRES (CICS) into the shared virtual area (SVA). These modules
have already been linked using the link deck CSVLVRES or CSVNVRES
and marked as shared virtual area (SVA) eligible.

If you do not want these modules to be SVA-resident, RDM loads them
into the VSE GETVIS area. If you want them to be SVA-resident, load
them in one of two ways:

¢ Add the phase name CSVLVRES or CSVNVRES to your automatic
system initialization (ASI) procedure. The next time you IPL the
system, CSVLVRES or CSVNVRES will be loaded into the SVA.

¢ Submit a VSE pause job to the background partition. Then you can
load CSVLVRES or CSVNVRES into the SVA through the VSE
system console.

The VSE job to implement the second method would be in the following
form:

// DLBL TISLIB,' dsnane'
/1 EXTENT, nnnnnn
LI BDEF CSVNVRES, FROVETI SLI B, SEARCH=TI SLI B

SET SDL

CSVLVRES, SVA

CSVNVRES, SVA

/ *
where:
dsname Specifies the data set name of the user core image

library containing the phase CSVLVRES or CSVNVRES.

nnnnnn Specifies the volume serial number of the disk containing

the core image library.

SET SDL Indicates that you are building a system directory list (SDL)
entry, listing phases that are SVA-eligible. CSVLVRES, SVA or
CSVNVRES, SVA indicates that the resident module is to be loaded into
the SVA.

NOTE The phases CSVLVRES and CSVNVRES are large. Make sure your
SVA is large enough to accommodate these phases in addition to your
2 other SVA eligible phases.

NOTE If CSVNVRES is put into the SVA, you may need to put an application
£ — load table (DFHALT) entry in your CICS tables, depending on your site
g— requirements.

RDM Administration Guide 127

Chapter 6 Maintaining the RDM

Gathering and interpreting statistics

RDM statistics track the number of RDML requests each user makes and
the number of physical data manager (PDM) requests RDM makes when
processing the user’'s RDML requests. These statistics can help indicate
how efficient your views are. Under a teleprocessing monitor, only one
task at a time can print statistics.

Gathering statistics with DBAID
Use the following DBAID commands to gather RDM statistics:

¢ STATS-ON. Initialize statistics to zero. Enable gathering of statistics
on user views on both the logical and physical levels.

¢ PRINT-STATS. Print the current statistics to the DMLPRINT file.
¢ STATS. Display the current statistics online.

¢ STATS-OFF. Disable gathering of statistics.

See “Managing views with the DBAID commands” on page 133 for

specific information about each DBAID command.

Gathering statistics in an application program
You can gather statistics from your application program. To do this,
move one of the following 4-byte codes into the TIS-OPTIONS field in the
TIS-CONTROL-AREA before the RDML call:
¢ SSTA Equivalent to the STATS-ON command
¢ ESTA Equivalent to the STATS-OFF command

¢ PSTA Equivalent to the PRINT-STATS command

128 P26-8220-64

Gathering and interpreting statistics

Interpreting RDM statistics

RDM prints statistics in a tabular report format. The first part of the report
is a table showing all the open user views and the number of RDML
requests made by the task.

The second part of the report contains a table showing the user view
name and the view used. The table shows which files the view
contained. There is one line in the table for each ACCESS statement in
the view. Each line shows how many requests to the physical data
manager were performed.

There are no hard and fast rules for interpreting RDM statistics. Statistics
vary depending on whether you are penetrating a file or sweeping it.
When you sweep a file, there are more RDM calls to the physical data
manager than when you supply a key value and penetrate a file.

Statistics example

Following is an example showing the statistics gathered during the
sample DBAID session in “Defining and testing views with DBAID” on
page 104:
> STATS SANPLE- DERI VED- VI EW
VI EW NAVE GET | NSERT UPDATE DELETE
SANVPLE- DERI VED- VI EW 7 1 0 0
LVL ACCESS NAME

0 | CUST- BASE- VI EW
0 | BRANCH BASE- VI EW
0 | REG ON- BASE- VI EW

oo~
oor
ooo
ooo

> STATS- OFF

The statistics report is in two parts. The first part of the report shows that
seven logical GETs were performed on the user view,
SAMPLE-DERIVED-VIEW.

The second part of the report gives the name of the user view and the
views used. In this example, when the CUST-BASE-VIEW was used to
GET seven records, there were seven reads to the CUST-BASE-VIEW,
six reads to the BRANCH-BASE-VIEW, and six reads to the
REGION-BASE-VIEW. One customer record was inserted.

LVL refers to the level of occurrence for the column name. (See the
description of the BY-LEVEL command in “Managing views with the
DBAID commands” on page 133 for more details.)

RDM Administration Guide 129

Chapter 6 Maintaining the RDM

Relating views to users

You control the security of the database by defining on the Directory
which users can use which views are related to which users. A user can
use a view only if that view is related to that user or that view is related to
the *PUBLIC** user.

You can relate a view to a user with one of the following:
¢ The DBAID command PERMIT

¢ The DBAID command PUBLIC-PERMIT (to relate a view to the
PUBLIC user)

¢ The Directory Maintenance RELATE command

Whether you use DBAID or Directory Maintenance to create the
relationship, the relationship is stored on the Directory.

You can remove the relationship of a view to a user with one of the
following:

¢ The DBAID command DENY

¢ The DBAID command PUBLIC-DENY (to remove a view’s
relationship to the **PUBLIC** user)

¢ The Directory Maintenance REMOVE command

For information about the DBAID commands, see “Managing views with
the DBAID commands” on page 133. For information about the Directory
Maintenance commands, refer to the SUPRA Server PDM Directory
Online User’s Guide (OS/390 & VSE), P26-1260, or the SUPRA Server
PDM Directory Batch User's Guide (OS/390 & VSE), P26-1261.

You need not use the same program to remove a relationship that you
used to create it. You can remove a relationship with DBAID whether you
created it with DBAID or not. You can remove a relationship with
Directory Maintenance whether you created it with Directory Maintenance
or not.

130 P26-8220-64

Relating views to users

You can relate both base and derived views to users. However, you can
relate users to a derived view without authorizing them to use the base
view that the derived view accesses. While the derived view accesses
the base view, it can impose additional security on the user. The
following figure shows BASE-VIEW-A which has all update capabilities.
Brad is related to BASE-VIEW-A while Mary is related to
DERIVED-VIEW-B which accesses BASE-VIEW-A. Mary cannot directly
use BASE-VIEW-A. DERIVED-VIEW-B provides additional security, and
Mary only has read access to the information contained in

BASE-VIEW-A.
Base-View-A Derived-View-B
10 columns 10 columns
All update Read only
options
Users: X
Brad Users:
Julie Mary
Sally

RDM Administration Guide 131

Chapter 6 Maintaining the RDM

Recovering data

RDM itself provides no recovery. You can recover the data in a physical
file if your physical file manager, teleprocessing monitor, or other
program provides the ability to recover that file. For example, the SUPRA
physical data manager (PDM) provides the ability to recover native PDM
files. CICS provides the ability to recover certain files you define in your
CICS tables.

If you update data on different physical platforms (SUPRA PDM, native
KSDS VSAM) in the same logical unit of work, that set of updates may

not be recoverable as a whole. Partial recovery of a logical unit of work
leaves your data logically inconsistent.

RDM supports access to KSDS VSAM files, but neither SUPRA Server
nor VSAM provides the ability to recover such files.

When the SUPRA PDM is running with Task Level Recovery (TLR), the
RDML COMMIT command, issued by DBAID or by an application, makes
all updates to the PDM database permanent. The RDML RESET
command backs out any database updates since the last COMMIT.

CICS provides Dynamic Transaction Backout (DTB). A COMMIT makes
all updates to the database permanent and takes a CICS sync point. A
RESET backs out any database updates since the last COMMIT but
does not restart the task. Instead, the RESET command performs the
CICS rollback operation and then returns control to the program.

For information on logging and recovery in SUPRA Server, refer to the
SUPRA Server PDM Logging and Recovery Guide (0S/390 & VSE),
P26-2223.

132 P26-8220-64

v

Managing views with the DBAID
commands

This chapter introduces the DBAID utility and describes each of the
DBAID commands in alphabetical order.

Introduction to DBAID

With the DBAID utility you can manage views. DBAID provides you with
functions that include the following:

¢

¢

RDM Administration Guide

Create, edit, display, open, bind, close, and delete views.
Store views on the Directory.
Remove views from the Directory.

Create, modify, and remove relationships between views and users
on the Directory.

Add, read, update, and delete user data records with views.
Save position information for user data records.

Finalize (commit) or reverse (reset) a series of operations to user
data records.

Set parameters for DBAID output.
Enable, initialize, and disable statistics gathering.
Display information relevant to view management, including statistics,

list of views, list of public views, list of users, list of views for a user,
and list of users for a view.

133

Chapter 7 Managing views with the DBAID commands

134

You can define and manage both base views and derived views with
DBAID. For information on defining derived views, see “Defining and
using derived views” on page 63. For information on defining base views,
see the SUPRA RDM support supplement(s) for the physical data
platform(s) you use:

¢ SUPRA Server PDM RDM PDM Support Supplement (OS/390 &
VSE), P26-8221

¢ SUPRA Server PDM RDM VSAM Support Supplement (OS/390 &
VSE), P26-8222

RDM and DBAID provide limited support for positional keywords (SAME,
PRIOR, LAST, etc.) for the GET, GO, and INSERT commands
depending on the physical data platform. The support is limited because
of differences in the platforms and because record position is not a
relational concept. Some positional keywords RDM does not accept for
some platforms. You may get different results for the same keyword for
different platforms. For details, see the SUPRA Server RDM support
supplement(s) for the platform(s) you use.

There are two versions of DBAID: batch DBAID and online DBAID. The
format of the commands are identical in the two versions. The effects of
the commands are identical in the two versions except for the UPDATE
command; see the UPDATE command considerations for details.

Your SUPRA Server libraries contain procedures and job control
language (JCL) samples for running batch DBAID. Samples are subject
to change. See the SUPRA Server JCL library or source statement
library member TXJ$INDX for a list of JCL samples.

os/390|

See the SUPRA Server procedure library member TISSRDM for a list of
RDM procedures. See the SUPRA Server macro library or source
statement library member TX$$INDX for an index to the different kinds of
samples. For more information on JCL samples, refer to the SUPRA
Server PDM and Directory Administration Guide (OS/390 & VSE),
P26-2250.

P26-8220-64

Introduction to DBAID

Each DBAID command must be coded on a single line or input record.
The command and its operands must fit in the first 72 columns of its line.
A line with an asterisk in the first column is a comment; DBAID ignores
comment lines. DBAID commands are divided into the following
categories:

¢ System commands. Use these to display information about the
DBAID utility currently executing. They display information such as
current users and active views, and they perform functions on the
Directory for you.

¢ Editing commands. Use these to change existing view definitions,
as well as to create new views to test before saving them on the
Directory.

¢+ RDML commands. Use these to test data with a defined view to
make sure the view is properly defined.

¢ Built-in view commands. Use these to inspect the view after it is
opened.

¢ Statistics commands. Use these to gather, display, and print

statistics on a particular user area. The following tables list all the
commands by category and gives a brief description.

RDM Administration Guide 135

Chapter 7 Managing views with the DBAID commands

System commands

Command |Description

BIND Binds a view.

COPY Copies the view definition of one view to another view. Only the
DBA can use this command.

DENY Removes the relationship between a user and a view on the
Directory.

LINESIZE Specifies width of line for DBAID output.

MARKS Lists all open MARKSs and the views they are marking.

PAGESIZE Specifies the number of lines on the page/screen for DBAID
output.

PERMIT Relates a view to a user on the Directory.

PUBLIC-DENY Removes the relationship between the view entities and the
*PUBLIC** user on the Directory.

PUBLIC-PERMIT Relates a view(s) to the **PUBLIC** user on the Directory.

PUBLIC-VIEWS Lists the names and short text for the views related to the
*PUBLIC** user.

REMOVE Removes the view definition, view bindings, and the relationship
between the view and the schema. Only the DBA can use this
command.

SHOW-NAVIGATION Displays the access strategies RDM uses for entities
(files/views) accessed in open views.

USER-LIST Displays column list for the view nhamed.
VIEWS Displays all views active in DBAID.

Editing commands

Command | Description

DEFINE Defines a name for a virtual view. Only the DBA can use this
command.

EDIT Readies a stored or virtual view for modification. Only the DBA can
use this command.

line-number Deletes, adds, or replaces a line in the view you are currently editing.
Only the DBA can use this command.

LIST Lists a stored or virtual view and readies it for modification. Only the
DBA can use this command.

RENUMBER Renumbers a virtual view so that line numbering starts at ten with
each line incremented by ten. Only the DBA can use this command.

UNDEFINE Deletes a defined virtual view.

136 P26-8220-64

RDML commands

Introduction to DBAID

|C0mmand Description

= Reissues the previous RDML command.

BYE Exits the DBAID utility.

CAUTIOUS Prohibits an automatic COMMIT.

COMMIT Makes all updates since last commit
permanent in the database.

DELETE Removes a row from the database.

ERASE Issues an RDM RESET if an X FSl is
returned.

FORGET Frees the storage allocated by a previously
issued MARK command.

GET Retrieves and displays the requested row for
the indicated view.

GO Issues multiple GET commands, and
displays the rows in tabular format.

INSERT Places a row in the physical database based
on relative location specified.

KEEP Prohibits an automatic RESET.

MARK Marks the current position of the view
established by the previous GET.

OPEN Readies either a virtual or stored view for use
by the DBAID utility.

RELEASE Closes one or all views that have been
opened, and releases the occupied storage.

RESET Forces a task level abend and rolls back any
database updates since the last commit.

SIGN-OFF Signs off the user from the DBAID utility.

SIGN-ON Identifies the user to the DBAID utility.

SURE Causes a COMMIT after each successful
insert, update, or delete.

UPDATE Updates data values in the database.

RDM Administration Guide

Chapter 7 Managing views with the DBAID commands

Built-in view commands

|C0mmand |Descripti0n

BY-LEVEL Displays the column names in the view by
level of occurrence.

COLUMN-DEFN Displays the full description of a column in a
view.

COLUMN-TEXT Displays the short and long text for a column
in a view.

FIELD-DEFN Displays a description of a column in a view.

This information is a subset of the information
returned by COLUMN-DEFN.

VIEW-DEFN Displays a condensed description of the view.

VIEWS-FOR-USER Lists the views related to the signed-on user
and the short text for the view.

Statistic commands

|C0mmand Description
PRINT-STATS Prints the current statistics. Only the DBA
can use this command.
STATS Displays the current statistics for all open

views or a particular open view, online. Only
the DBA can use this command.

STATS-OFF Prints the current statistics and then disables
the statistics gathering. Only the DBA can
use this command.

STATS-ON Initializes statistics to zero and then enables
the statistics gathering on user views on both
the logical and physical levels. Only the DBA
can use this command.

138 P26-8220-64

= command

= command

The = command reissues the previous RDML command.

Example In the following example, = causes another “GET NEXT CUST-PROD-
VIEW.”

GET NEXT CUST- PRCD- VI EW

RDM Administration Guide 139

Chapter 7 Managing views with the DBAID commands

BIND command

The BIND command binds or rebinds view(s) that are stored on the
Directory. If there are two versions of a view, a virtual version and a
saved version, BIND will bind the saved version without saving or
affecting the virtual version. The DBA can use the BIND command to
bind a view without also saving it (BIND view-name). The DBA may
rebind all currently bound views (BIND BOUND) or bind all the views in a
schema (BIND ALL).

o

HaLL

E

BIND [sch - :
[schema-name:] SBOUND E
H

Hiew - name

schema-name:

Description

Format

Consideration

Optional. Identifies the schema in which the view is to be bound.

Must be a valid schema defined on the Directory. The schema name
must be followed by a colon.

If you omit this parameter, DBAID uses the active schema.

o 0
HALL]
BBOUND ©
Hiew - nameH

140

Description
Format

Options

Required. Specifies which views to bind.

View-name must be the name of an existing saved view.

* Bind the view you used most recently.

ALL Bind all views in the schema.

BOUND Rebind all currently bound views in the schema.
view-name Bind the named view.

P26-8220-64

BIND command

General considerations

¢ The BIND ALL command takes a long time to complete and may fill
your Directory, because it binds each of your views.

¢ After successfully binding each view, DBAID issues a COMMIT.

¢ If an error occurs while binding a view, DBAID issues a RESET for
that view and continues processing with any remaining views.

¢ You can use this command only if your active environment
description specifies update access to the Directory. For information
on maintaining your environment description, refer to the SUPRA
Server PDM Directory Online User’s Guide (OS/390 & VSE),
P26-1260, or the SUPRA Server PDM Directory Batch User’s Guide
(OS/390 & VSE), P26-1261.

¢ Binding a derived view has no effect on the views it accesses.

¢ You must rebind a derived view after changing a view it accesses.

Example This example binds BRANCH-VIEW. Notice the message indicating how

many bytes were used.

RDM Administration Guide

> BI ND BRANCH- VI EW

Bl NDI NG BRANCH- VI EW

FSI: * VSI: = M5G 2504 BYTES USED I N VI EW Bl NDI NG
VI EW Bl NDI NG SUCCESSFUL

141

Chapter 7 Managing views with the DBAID commands

BYE command

142

The BYE command exits the DBAID utility.

BYE

General considerations

¢

In an online environment, the BYE command returns you to the RDM
signon screen or other user-installed menu screens.

In a batch environment, the BYE command terminates the task.

The BYE command erases all unsaved virtual views. Because virtual
views are stored in memory, only those explicitly saved will be stored
on the Directory. Be sure to SAVE any new or altered view
definitions on the Directory before leaving DBAID if you want to keep
them.

If you entered DBAID with the task already signed-on to RDM, the
BYE command does not perform a SIGN-OFF. If you entered DBAID
with the task signed-off from RDM, which requires you to issue a
SIGN-ON, the BYE command performs a SIGN-OFF.

The BYE command prints statistics and then disables them if
statistics are on.

P26-8220-64

BY-LEVEL command

BY-LEVEL command

The BY-LEVEL command displays the column names in a view by level
of occurrence starting with level 0, followed by level 1, and so on. RDM
generates the column number when displaying this data.

BY-LEVEL B_ B[column-number]
%lew -namep]

k] g
%iew - name%

Description

Format

Options

Consideration

Optional. Specifies the one view whose column names you want to
display.

View-name must be the name of an existing, opened view.

* Display column names for the view you used most
recently.
view-name Display column names for the named view.

If you omit this parameter, BY-LEVEL displays all column names for all
your opened views.

column-number

Description

Format

Considerations

Optional. The number of the one column whose name you want to
display.

Numeric characters.

¢ To use this parameter, you must have specified a view.

¢ If you omit this parameter, the BY-LEVEL command displays all
column names of the indicated view(s).

RDM Administration Guide 143

Chapter 7 Managing views with the DBAID commands

144

Example

> BY-LEVEL
NUMBER

N o O WN PPN

VI EW NAMVE
REGN

REGN

BRANCH- VI EW
BRANCH- VI EW
BRANCH- VI EW
BRANCH- VI EW
BRANCH- VI EW
BRANCH- VI EW
BRANCH- VI EW

FI ELD NAME
REG ON- NO

REG ON- NAME
BRANCH- NO
BRANCH- NAME
BRANCH- ADDR
BRANCH- CI TY
BRANCH- STATE
BRANCH- ZI PCCDE
BRANCH- REG ON

LEVEL

O O OO O o o o o

P26-8220-64

CAUTIOUS Command

CAUTIOUS Command

The CAUTIOUS command disables the DBAID automatic COMMIT
facility. This command is the opposite of the SURE command. When
you use CAUTIOUS, DBAID does not automatically issue a COMMIT
when an RDML INSERT, UPDATE, or DELETE command returns an “*”
FSI. Instead, you must issue the COMMIT.

CAUTIOUS

General considerations

¢ DBAID normally issues a COMMIT after every successful RDML
modification. The CAUTIOUS command is not required; however,
you can use it when you want manual control over COMMIT
commands when updating the database.

¢ CAUTIOUS does not affect the COMMIT that system commands

(REMOVE, SAVE, BIND, PERMIT, and DENY) may issue. These
COMMITs must be issued after you modify the Directory.

RDM Administration Guide 145

Chapter 7 Managing views with the DBAID commands

COLUMN-DEFN command

The COLUMN-DEFN command displays the full internal description of
columns in a view.

COLUMN-DEFN J

O
) rlcolumn-name]
%ﬂew -name[]

hj 0
%iew - name%

Description

Format

Options

Consideration

Optional. Specifies the one view whose column descriptions you want to
display.

View-name must be the name of an existing, opened view.

* Display column descriptions for the view you used most
recently.
view-name Display column descriptions for the named view.

If you omit this parameter, COLUMN-DEFN displays all column
descriptions for all your opened views.

column-name

Description

Format

Optional. Identifies the one column whose description you want to
display.

The name of an existing column in the specified view.

Considerations

146

¢ If you use this parameter, you must have specified a view.

¢ If you omit this parameter, the COLUMN-DEFN command displays
all column descriptions for the indicated view(s).

P26-8220-64

General consideration

COLUMN-DEFN command

The information returned by FIELD-DEFN is a subset of the information

returned by COLUMN-DEFN.

Example This example shows a description of one of the columns in the BRAN

view.

RDM Administration Guide

> COLUWN- DEFN

VI EW NANE
COL- NAVE
ooL- POS

COL- LEN

COL- ASI - POS
COL- DEC

COL- OUTP- LEN
COL- MASK- LEN
COL- FORMAT
COL- MASK
COL- HEADI NG
COL- DEL- OPT
COL- | NS- OPT
COL- UPD- OPT
COL- REDUND
COL- CONSTANT
COL- LEVEL
OOL- KEY- NUM
COL- REQUI RED
COL- UNI QUE

COL- EDI T- TRANS

COL- ORDERI NG
COL- SI GNED
COL- NULLS- &K
COL- NULL- LEN
COL- NULL- VAL
COL- DOVAI N
CCOL- VAL- TYP
COL- GET- VAL
COL-M N-LEN
COL-M N- VAL
COL- MAX- LEN
COL- MAX- VAL

COL- VAL- TABLE

COL-EXIT
COL- SRC- TYP
COL- SRC- COL
COL- SRC- REL
COL- | NT- REL
COL- RC

(+
("
(+
("
(+
("
(+
(-)
(+
(-)
()
(")
(+
(+)
(+
(+)
(+
(")
(+
("
(+
(-)
(4
("
()
(-)
(4
("

BRAN
BRANCH- NO

NnohowboO

<<rozZzzz<<

N
N
0

DM BRANCH- | DENTI FI ERS

oz

147

Chapter 7 Managing views with the DBAID commands

COLUMN-TEXT command

The COLUMN-TEXT command displays the short and long text for a
column in a view. For compatibility purposes, you can use the FIELD-
TEXT command in the same manner as the COLUMN-TEXT command.

hj

COLUMN-TEXT %’
iew - name

O
rlcolumn-name]
O

k]

%iew -name[]

0
O

Description
Format

Options

Consideration

Optional. Specifies the one view whose column text you want to display.
View-name must be the name of an existing, opened view.

* Display column text for the view you used most recently.
view-name Display column text for the named view.

If you omit this parameter, COLUMN-TEXT displays the text for each
column in each of your opened views.

column-name

148

Description

Format

Optional. ldentifies the one column for which you want to display the
short and long text.

The name of an existing column in the specified view.

Considerations

Example

¢ If you use this parameter, you must have specified a view.

¢ If you omit this parameter, the COLUMN-TEXT command displays
the text for each column in the indicated view(s).

This example shows the short and long text describing the BRANCH-
ADDR column in the BRAN view.

> COLUMN- TEXT ~ BRAN BRANCH- ADDR
VI EW NAVE COLUWN NAME SHORT TEXT LONG TEXT
BRAN BRANCH- ADDR

BRANCH STREET ADDRESS

P26-8220-64

COMMIT command

COMMIT command

The COMMIT command makes permanent in the database all updates
since the last COMMIT (a logical unit of work).

COMMIT

General considerations

¢ DBAID issues a COMMIT after every successful RDML maodification
unless you have issued a CAUTIOUS command. You can use the
COMMIT command to issue a COMMIT if you have issued a
CAUTIOUS command.

¢ The system commands REMOVE, SAVE, BIND, PERMIT, and
DENY issue a COMMIT after successful modification of the
Directory.

¢ The physical action RDM performs for COMMIT, if any, depends on
the physical platform and operating environment.

RDM Administration Guide 149

Chapter 7 Managing views with the DBAID commands

COPY command

The COPY command creates a new view with the same definition as an
existing view.

COPY [schema-name:] view-name; view-name,

schema-name:
Description

Format

Consideration

Optional. ldentifies the schema where the view to be copied is defined.

Must be a valid schema defined on the Directory. The schema name
must be followed by a colon.

If you omit this parameter, COPY uses the active schema.

view-nameq
Description Required. Identifies the name of the view to copy.
Format Must be a valid view on the Directory for the schema.
view-namesp
Description Required. Identifies the new name for the view being copied.
Format 1-30 alphanumeric characters and the special characters # and $. The

Consideration

150

first character must be alphabetic or a special character. If the first
character is a special character, the second character must be
alphabetic.

After copying, DBAID lists the new view (see the LIST command) and
makes it available for editing.

P26-8220-64

COPY command
General consideration

When DBAID performs the COPY command, it first searches for a virtual
view with the name of view-name;. If it does not find this view, DBAID
searches the Directory for the view. Once it finds the view on the
Directory, it creates a virtual view of view-name;. Finally, it copies the
view definition of view-name; to view-name,, and lists view-name,.

Examples

¢ The following example copies CUSTOMER from the Directory for the
active schema and names it NEW-CUSTOMER. DBAID lists NEW-
CUSTOMER and makes it available for editing.

> COPY CUSTQVER NEW CUSTOVER

¢ The following example copies TEST-VIEW from the Directory for the
schema SCHEMAXX and names it PRODUCTION-VIEW:

> COPY SCHEMAXX: TEST- VI EW PRODUCTI ON- VI EW

RDM Administration Guide 151

Chapter 7 Managing views with the DBAID commands

DEFINE command

The DEFINE command defines a new view name to DBAID.

DEFINE view-name

view-name
Description Required. Specifies the name to use as a new view hame.

Format 1-30 alphanumeric characters and the special characters #, -, and $.
The first character must be alphabetic or a special character. If the first
character is a special character, the second character must be
alphabetic.

General considerations

¢ The DEFINE command does not go to the Directory to retrieve a
view. It creates a virtual view, one that exists only within the DBAID
execution. You can also save a virtual view in the Directory (see the
SAVE command).

¢ Once you have issued the DEFINE command, you can use the line-
number command to begin creating your view.

+ DBAID terminates DEFINE when it encounters a command other
than the line-number command.

¢ You can change previously defined views with the EDIT command or
list them with the LIST command.

¢ Remove a defined view from DBAID with the UNDEFINE command.

However, if the defined view is open, an UNDEFINE command does
not release the RDM view definition.

152 P26-8220-64

DELETE command

DELETE command

The DELETE command removes a row from the database.

DELETE [ALL] E*_ 3
[yiew —namep]

ALL

Description

Consideration

Optional. Deletes all rows retrieved by automatically generated GET
NEXTs using the logical key specified on the GET command.

If a program specifies a GET without a USING phrase, DELETE ALL
deletes all rows in the relation. DELETE ALL can have far reaching
effects, so be sure that the prior GET call limits the DELETE to the
desired rows.

[y 0
0. 0
[yiew —namepj

Description

Format

Options

Required. Specifies the name of the view for the relation containing the
row(s) to delete.

View-name must be the name of an existing, opened view.
* Delete rows for the view you used most recently.

view-name Delete rows for the named view.

RDM Administration Guide 153

Chapter 7 Managing views with the DBAID commands

General considerations

¢+ Before performing the DELETE, you must perform a successful GET
command.

¢ Any ASlIs resulting from a DELETE have no meaning.
Examples

¢ This example deletes the one row of SAMPLE-VIEW that was
obtained based on the value in KEY1.
> GET SAMPLE- VI EW USI NG KEY1
> DELETE SAMPLE- VI EW

¢ This example deletes all rows in SAMPLE-VIEW:

> CGET SAMPLE- VI EW USI NG KEY1
> DELETE SAMPLE- VI EW

The preceding two DBAID commands have the same effect as the
following COBOL code:
RETURN.
GET NEXT SAMPLE- VI EW FOR UPDATE USI NG KEY1
NOT FOUND GO TO CONTI NUE.
DELETE SAMPLE- VI EW
GO TO RETURN.
CONTI NUE.

154 P26-8220-64

DENY command

DENY command

The DENY command revokes a user’s privilege to use a view. The
command removes the relation between the user and the view entities on
the Directory. This command provides security because it allows the
DBA to define in the Directory who can use a view.

o O a0 O
DENY . [user —namei[] [user —namez...[
[yiew —namep MmO g
o 0
o. 0
[yiew —name[j
Description Required. Specifies the view for which you are denying the user access.
Format View-name must be the name of an existing view.
Options * Deny access to the view you used most recently.

view-name Deny access to the named view.

0O O
user —namezi[J] [User —nameaz...[J

3 0 g
Description Required. The name(s) of the user(s) you are denying access to the
view.
Format Each user-name must be the name of an existing user defined on the

Directory. User names must be separated by a comma or a blank.

General considerations

¢

RDM Administration Guide

You can use the DENY command to remove the relationship
between a user and a view, regardless of whether you created the
relationship with Directory Maintenance or the PERMIT command.

After successfully removing the view’s relationship with each user,
DBAID commits the Directory update.

If an error occurs while removing the relationship between the view
and a user, DBAID backs out (resets) the Directory update and
terminates processing of the command.

You can use this command only if your active environment
description specifies update access to the Directory.

155

Chapter 7 Managing views with the DBAID commands

EDIT command

The EDIT command readies a saved or virtual view for modification.

EDIT [schema-name:] g B
[yiew —name[]

schema-name:

Description Optional. ldentifies the schema in which the view to be edited is defined.
o O
0. O
[yiew —namep]
Description Required. Identifies the view to be edited.
Format View-name must be the name of an existing view.
Options * Edit the view you used most recently.
view-name Edit the named view.
General considerations
¢ When you issue the EDIT command, the system first searches for a
virtual view. If it does not find it, the system then searches the
Directory.
¢ Once you have issued the EDIT command, you can use the line-
number command to modify your view. When you enter a command
other than a LINE-NUMBER command, DBAID terminates the EDIT.
¢ You enter the EDIT mode automatically after a LIST or DEFINE
command.
¢ The LIST command can display a view before or after editing. The
LIST command automatically issues an EDIT.
¢+ EDIT changes exist only within the DBAID execution, but you can
save them on the Directory with the SAVE command.
156 P26-8220-64

ERASE command

ERASE command

The ERASE command causes DBAID to issue a RDM RESET if an

RDML command returns an X FSI. This command is the opposite of the
KEEP command.

ERASE

RDM Administration Guide 157

Chapter 7 Managing views with the DBAID commands

FIELD-DEFN command

The FIELD-DEFN command displays the full description(s) of column(s)
in a view.

FIELD-DEFN a

O
. plcolumn-name]
E(lew -namep]

hj 0
%iew - name%

Description

Format

Options

Consideration

Optional. Specifies the one view whose column descriptions you want to
display.

View-name must be the name of an existing, opened view.

* Display columns descriptions for the view you used most

recently.
view-name Display columns descriptions for the named view.

If you omit this parameter, FIELD-DEFN displays all column descriptions
for all your opened views.

column-name

Description

Format

Considerations

158

Optional. Identifies the one column whose description you want to
display.

The name of an existing column in the specified view.

¢ If you use this parameter, you must have specified a view.

¢ If you omit this parameter, the FIELD-DEFN command displays all
column descriptions for the indicated view(s).

P26-8220-64

FIELD-DEFN command

General consideration

The information returned by FIELD-DEFN is a subset of the information
returned by COLUMN-DEFN.

Example This example shows a description of all the columns in your opened
views.
> COLUMN- DEFN
VI EW NAME (+) CUSTOMER
FI ELD- NAME (+) CUSTOMER- NO
FI ELD- POS (+) 0
FI ELD- LEN (+) 6
ASI - POS (+) 83
FI ELD- DEC (+) 0
QUTPUT- LEN (+) 6
MASK- LEN (-) 0
FORVAT (+) C
EDI T- MASK (-)
HEADI NG (-)
DELETABLE (+) Y
| NSERTABLE (+) Y
REPLACEABLE (+) N
FI ELD- LVL (+) 0
KEY- NUMBER (+) 1
REQUI RED (+) Y
UNI QUE (+) Y
EDI T- TRANS (+)
ORDERI NG (-)
SI GNED (+) N

RDM Administration Guide 159

Chapter 7 Managing views with the DBAID commands

FORGET command

The FORGET command frees the storage allocated by a previously
issued MARK command.

FORGET mark-name

mark-name
Description Required. Specifies what mark information should be forgotten.
Format An existing mark name.
Consideration Must be a name you assigned with the MARK command.
General consideration
Once you have issued a FORGET command, DBAID releases the

indicated mark and you cannot regain it without issuing a new MARK
command.

160 P26-8220-64

GET command

GET command
The GET command retrieves and displays a row for the indicated view.

INEXT [
LAST [-
GET [SAME 0 . OJFOR UPDATE]
Oryiew - name[j
%lRST 0

PRIORH

AT mark - name
%JSING literal1literal2...

|

ONEXT O

0
g_AST o
[SAME 00

%IRST E
FPRIORH
Description Optional. Modifies the order of row retrieval.
Default NEXT If no current position exists, NEXT defaults to FIRST.
Considerations
¢ For a unique key:

GET NEXT Retrieves either the row immediately after the current
row or the first row if no current position exists.

GET LAST Retrieves the last row.
GET SAME Retrieves the latest row if a current position exists.
GET FIRST Retrieves the first row.

GET PRIOR Retrieves either the row immediately before the current
row or the last row if no current position exists.

¢ For a nonunique key:

GET NEXT Retrieves the next row within the generic group.
GET LAST Retrieves the last row.

GET SAME Retrieves the latest row if a current position exists.
GET FIRST Retrieves the first row with the indicated key.

GET PRIOR Retrieves the previous row within the group of
nonuniquely keyed rows.

¢ The effect of the positional keywords varies depending on the
physical data platform. See the discussion of positional keywords at
the beginning of this chapter.

RDM Administration Guide 161

Chapter 7 Managing views with the DBAID commands

o O

0. O

[yiew - namep
Description Required. Specifies the view for GET to use.
Format View-name must be the name of an existing, opened view.
Options * GET with the view you used most recently.

view-name GET with the named view.
FOR UPDATE

Description Optional. Locks the physical record(s) associated with the row you are
retrieving. Prevents others from updating those record(s).

Considerations

¢ The FOR UPDATE phrase allows you to perform modifications
dependent on the current contents of the view.

¢ If you do not need to lock the view, issue a GET without the FOR
UPDATE phrase. When you perform the UPDATE or DELETE
function, the automatic hold facility of RDM performs the lock prior to
modifying the row.

¢ FOR UPDATE implies that all physical resources remain locked until
you issue another GET or an INSERT, UPDATE, DELETE, COMMIT,
or RESET.

AT mark-name

Description Optional. Repositions a view previously marked with the MARK
command.

Consideration You cannot use the USING and AT phrases with the same GET
command.

162 P26-8220-64

GET command

USING literal, literal, ...

Description Optional. ldentifies a value or set of values to be used for a keyed GET.

Format Each literal consists of character, hexadecimal, or numeric data, in one of
the following forms:

‘cceecc' Character data

XOOOKXXK Hexadecimal data

'nnnnnn’ Numeric data (with optional quotes)
nnnnnn Numeric data (without optional quotes)

Considerations
’

Examples

RDM Administration Guide

The number of keys specified in the GET statement must be less
than or equal to the number of keys in your specified column list. No
more than nine keys are allowed in one view.

RDM treats any omitted keys as generic keys. The use of generic
keys is a convenient feature for allowing both direct access to a view
and a sequential scan of many rows. RDM will return all occurrences
of a particular unspecified column as long as the other keys are
satisfied.

The order of specified keys in the USING phrase corresponds to the
order of key declarations in your column list.

You must specify a valid and non-null value. RDM validates the
value before any physical I/O takes place.

This example shows the retrieval of the first row in the CUSTOMER
view.

> CGET CUST

This example shows a keyed GET.
> GET FIRST CUST USI NG 295551

163

Chapter 7 Managing views with the DBAID commands

GO command

The GO command issues a penetration GET request followed by a series
of sweeping GET requests, and displays the rows in tabular format.

INEXT 00 O
%RIORE%ieW - name%

U CNEXT e
. HAsT =
g ESAME

[BTART

0 FFIRST %
E EPRDR %
H FAT mark - name

[FOR number -of = rows]

UFROM O . . O
Oliteral1literal2...[]
SING[8

INEXT O

HPRIORH

Description

Default

Consideration

Optional. Specifies the GET command modifier to be used in retrievals
after the initial penetration.

NEXT

The effect of the positional keywords varies depending on the physical
data platform. See the discussion of positional keywords at the beginning
of this chapter.

o
O
v

164

iew - name

Description

Format

Options

Required. Specifies the view for GO to use.
View-name must be the name of an existing, opened view.
*

GO with the view you used most recently.

view-name GO with the named view.

P26-8220-64

GO command

INEXT 0
HAsT .
TART
START = %
IRST O
LPRIOR g
0

FAT mark - namefd

Description Optional. Specifies the GET command modifier to use for the initial
penetration of the database.

Default FIRST

Consideration The effect of the positional keywords varies depending on the physical
data platform. See the discussion of positional keywords at the beginning
of this chapter.

FOR number-of-rows
Description Optional. Indicates the maximum number of rows to be returned.
Format Numeric characters

Consideration GET NEXTSs repeat until the count is exhausted or until the last view is
retrieved, whichever occurs first.

RDM Administration Guide 165

Chapter 7 Managing views with the DBAID commands

(FROM O . .
Oliteral, literal, ...
HsiNGE

Description Optional. ldentifies a value or set of values to be used for a keyed GET.

Format Either character or numeric data. You must enclose character data that
includes blanks in quotes; numeric data need not be.

Options FROM Use the key values only on the initial penetration; the
scan is unqualified.

USING Use the key values for both the initial penetration and the
subsequent scan.

Considerations

¢ The number of keys specified in the GET statement must be less
than or equal to the number of keys in your specified column list.

¢+ RDM treats any omitted keys as generic keys. The use of generic
keys allows for both direct access to a view and a sequential scan of
many rows. RDM returns all occurrences of a particular unspecified
key as long as the other keys are satisfied.

¢ The order of specified keys in the USING phrase corresponds to the
order of key declarations in your column list.

¢ You must specify a valid and non-null value. RDM validates the
value before any physical I/O takes place.

166 P26-8220-64

GO command

General considerations

¢

Examples

RDM Administration Guide

RDM displays the output in columns. To display more data than will
fit on a screen/page, use an alternate format.

After the GO command displays a page of rows (see PAGESIZE),
the prompt *MORE** appears. Enter a blank line for each additional
page in batch mode; press ENTER for each additional page in online
mode.

At the end of the series of views retrieved by GO, the prompt
*END** appears.

Do not use “FOR number-of-rows” for online because DBAID will not
pause until the last screen.

The GO command always looks ahead one row so it can determine
whether to display the *MORE** or **END** message. If you issue a
GET after the GO, a row may appear to have been skipped. To view
the row immediately following the last row after the GO, issue a GET
SAME.

GO VIEW START AT VIEW-MARK1 USING (key-value) issues the
following sequence of RDM GET commands:

> CGET VI EW AT VI EW MARK1
> CGET NEXT VI EW USI NG (key-val ue)
> CGET NEXT VI EW USI NG (key-val ue)

until RDM returns a not found FSI.

GO PRIOR VIEW START LAST FROM (key-value) issues the
following sequence of RDM GET commands:

> GET LAST VI EW USI NG (key-val ue)
> GET PRI OR VI EW
> GET PRI OR VI EW

until RDM returns a not found FSI.

167

Chapter 7 Managing views with the DBAID commands

INSERT command

The INSERT command places a row in the physical database based on
the relative location you specify.

INEXT O

LAST Sg

[FIRST Upyiew - name
RIORE

INSERT E[MASS]
0

INEXT O
O

LAST [
[FIRST O

PRIORE

Description

Default

Considerations

168

Optional. Specifies the relative location of the row you want to insert.
The access definition may override this specification.

NEXT

¢ For nonuniquely keyed values:
INSERT FIRST Places a row in the first position in the view.

INSERT NEXT Places a row after the current row. If no current
position exists, INSERT NEXT places the row in the
last position in the view.

INSERT PRIOR Places a row before the current row. If no current
position exists, INSERT PRIOR places the row in the
first position in the view.

INSERT LAST Places a row in the last position of the view.
¢ The effect of the positional keywords varies depending on the

physical data platform. See the discussion of positional keywords at
the beginning of this chapter.

P26-8220-64

INSERT command

o O

0. O

[yiew - nameq
Description Required. Specifies the view to use to insert the row(s).
Format View-name must be the name of an existing, opened view.
Options * INSERT with the view you used most recently.

view-name INSERT with the named view.
MASS

Description Optional. Allows you to insert multiple rows in the physical database.

Considerations

RDM Administration Guide

Every RDM insert command issued by MASS insert uses the
positioning parameter specified (NEXT, LAST, FIRST, or PRIOR).

Enter views immediately following this command after the prompt
lines MASS INSERT PROCESSING INITIATED and ENTER “END.”
TO EXIT MASS INSERT appear.

Separate the column values with commas. To insert rows longer
than one line, terminate the list of values with a comma and continue
the input on the next line.

Place multiple rows on a single line by leaving a blank between rows.

Use a pair of single quote marks to enclose columns containing
spaces.

If you have columns with no values, enter two consecutive commas
to indicate their absence. RDM treats this as a null value for packed
or zoned columns, as a large number (X'40404040' or 67372036
integer) for binary columns, and as blanks for a character column.

Specify END. after you enter all rows to be inserted into the view.
The period after END is mandatory.

169

Chapter 7 Managing views with the DBAID commands

General considerations

¢ After you enter the column values on a single insert (not using
MASS), RDM displays the view. The message INSERT (Y/N)?
appears. Enter a Y response to insert the view. Any other response
will not insert the row.

¢ Processing stops if RDM detects ten errors while using the MASS
insert; otherwise, enter END. to terminate insert processing.

¢ After an INSERT, C and V are the only meaningful ASls.

Examples The following are examples of using INSERT in an online environment.
The > indicates user input.

¢ Example of a single insert:

> | NSERT CUST
CUSTOMVER- NO

> A7865
CUSTOVER- NAVE

> SSTP

CUSTOVER- ADDR

> 3350 RUTHER
CUSTOMER- CI TY

> O NCI NNATI
CUSTOVER- STATE

> OH

CUSTOVER- ZI PCODE
> 45220
CUSTOVER- CLASS

> T8

CUSTOVER- CR-LI M
> 750. 00
CUSTOVER- BRANCH
> 1261

CUSTOMVER- NO
CUSTOVER- NAVE
CUSTOVER- ADDR
CUSTOMER- CI TY
CUSTOVER- STATE
CUSTOVER- ZI PCODE
CUSTOVER- CLASS
CUSTOVER- CR- LI M
CUSTOVER- BRANCH

I NSERT (Y/ N)?
>y

FSI: * VSI: + MBG SUCCESSFUL COMPLETI ON

A7865

SSTP

3350 RUTHER
Cl NCI NNATI
oH

45220

T8

750. 00

1261

NSNS AN~~~
—

170 P26-8220-64

RDM Administration Guide

INSERT command

Example of a MASS insert (first row):

> | NSERT * MASS

MASS | NSERT PROCESSI NG | NI TI ATED.

ENTER "END." TO EXIT MASS | NSERT.

> 9997, BBBB, 100783

FSI: * VSI + M5G SUCCESSFUL COVPLETI ON

Example of same MASS insert (using comma to continue to next
line):

> 9996, CCCC,

> 100683

FSI * VSI: + MSG SUCCESSFUL COVPLETI ON

Example of same MASS insert (multiple rows on a single line):
> 9995, DDDD, 100583 9994, EEEE, 100483 9993, FFFF, 100383
FSI * VSI: + MSG SUCCESSFUL COVPLETI ON
FSI * VSI: + MSG SUCCESSFUL COVPLETI ON
FSI * VSI: + MSG SUCCESSFUL COVPLETI ON

Ending the MASS insert processing:

> END.
MASS | NSERT PROCESSI NG COVPLETED.

171

Chapter 7 Managing views with the DBAID commands

KEEP command

The KEEP command disables the DBAID automatic RESET facility. This
command is the opposite of the ERASE command. This command
prohibits DBAID from issuing a RESET when it receives an X FSI from
the view. Instead, DBAID keeps the database as it is and lets the user
decide whether to RESET. This is the default setting.

KEEP

General considerations
¢ KEEP is the default.

¢+ KEEP does not affect the RESET that systems commands may issue
(REMOVE, SAVE, BIND, PERMIT, and DENY) when an error occurs.

172 P26-8220-64

Line-number command

Line-number command

The line-number command deletes, adds, or replaces a view definition
statement in the virtual view currently being edited or defined.

line-number [view-definition-statement]

line-number
Description Required. Indicates the number of the line to delete, add, or replace.
Format 1-4 numeric characters

Considerations

¢ If aline number is less than four digits, DBAID adds zeroes to the
front of the number. For example, 10 becomes 0010. If the number
is longer than four digits, DBAID truncates it to the first four digits.

¢ If you use the line-number command without a following ddl-
statement line, this command deletes the line from the view
definition.

view-definition-statement
Description Optional. Specifies the view definition statement to add or replace.

Format Must be a valid view definition statement.

RDM Administration Guide 173

Chapter 7 Managing views with the DBAID commands

174

General considerations

Example

¢

Before you can use this command, you must first have issued a
DEFINE, EDIT, or LIST command.

Entering a command other than line-number terminates the DEFINE,
EDIT, or LIST command.

This example first lists the view, and when you type in the line number,
modifies
the lines.

> LI ST CUST

0100 CUSTQOVER- NO
0200 CUSTQOVER- ADDR
0300 CUSTOVER-CITY
0400 ACCESS CUST

> 100 KEY CUSTOMER- NO *Repl aces |ine 100
> 150 CUSTOVER- NAMVE *Inserts line 150
> 300 *Del etes |line 300

DBAID lists the modified view again.

> LI ST CUST

0100 KEY CUSTOMER- NO
0150 CUSTOVER- NAME
0200 CUSTQOVER- ADDR
0400 ACCESS CUST

P26-8220-64

LINESIZE command

LINESIZE command

The LINESIZE command specifies the number of characters to display in
a line.

LINESIZE [number-of-characters]

number-of-characters

Description Optional. Indicates the number of characters to display on a line.

Default 79
Format 2-3 numeric characters.
Options 10-132

Considerations

¢+ In an online environment, the screen size restricts the line size
maximum to the line capacity of the screen.

¢ If you omit the number-of-characters, the command displays the
current LINESIZE setting.

RDM Administration Guide 175

Chapter 7 Managing views with the DBAID commands

LIST command

The LIST command displays a saved or virtual view and readies it for
modification.

[y g
LIST [schema-name:] J . O
[view - name[]

schema-name:
Description

Format

Consideration

Optional. Identifies the schema in which the view to be listed is located.

Must be a valid schema defined on the Directory. The schema name
must be followed by a colon.

If you omit this parameter, LIST uses the active schema.

[y 4
0. 4
fyiew - name[j

Description
Format

Options

Consideration

176

Required. Specifies the view to list.

View-name must be the name of an existing view.

* List the view you used most recently.
view-name List the named view.

If the view-name is not a virtual view, DBAID searches for the view in the
Directory.

P26-8220-64

LIST command

General considerations

¢ Once you issue the LIST command, you can use the line-number
command to modify your view.

¢ If a LIST command returns no definition for a view, you may have
opened the view without doing a LIST or DEFINE of the view in the
current session. To remedy this, do a RELEASE, then UNDEFINE,
and then LIST. You must open the view again to execute it.

¢ LIST automatically issues an EDIT command for this view.

¢ Using LIST prior to OPEN reads the text for the view definition from
the Directory. A subsequent open of this view will not perform any
security checking on whether the view is related to the user.

¢+ DBAID can create views when you enter text with LIST, DEFINE, or
EDIT. If you use LIST on a view in the Directory, the text becomes a
virtual view and DBAID can modify it. Virtual views let you open a
view without relating it to a user. A SAVE command does not relate
the DBAID user to the view.

Examples

¢ The following lists the BRANCH-VIEW from the active schema:

> LI ST BRANCH VI EW
0100 KEY BRANCH- NO

0200 BRANCH- NAVE
0300 BRANCH- ADDR
0400 BRANCH-CI TY
0500 BRANCH- STATE
0600 BRANCH- ZI PCODE

0700 REQ BRANCH REG ON = BRANCH- REG ON = REG O\-NO
0800 ACCESS E$BR WHERE BRANCH- NO = BRANCH- NO ALLOW ALL
0900 ACCESS E$RG ONCE WHERE REG ON- NO = BRANCH- REG ON
1000 ACCESS E$CU WHERE CUSTOMER- BRANCH = BRANCH- NO

¢ The following lists the view VIEW from the Directory. OTHERSCH is
not the active schema.

> LI ST OTHERSCH: VI EW

RDM Administration Guide 177

Chapter 7 Managing views with the DBAID commands

MARK command

The MARK command marks the current position of the view that the
previous GET command established.

O
. AT mark-name

MARK E*
[yiew - name[j

o O

Q. O

[yiew - namepj
Description
Format

Options

Required. Specifies the view for which the position is to marked.
View-name must be the name of an existing, opened view.

* Mark the position for the view you used most recently.

view-name Mark the position for the named view.

AT mark-name

Description

Format

Consideration

Required. Assigns a name to the location where you want to mark the
position of the current view.

1-30 alphanumeric characters and the special characters #, $ and -. The
first character must be alphabetic or a special character. If the first
character is a special character, the second character must be
alphabetic.

The name assigned is the name you will use in a later GET AT request to
retrieve using this view.

General considerations

178

¢ Use the AT clause in the GET command to reposition the view at the
position set by the MARK command and named by mark-name.

¢ You can create any number of MARKSs for a view, but to conserve
internal memory, it is best to reuse the mark-name when possible.

¢ The number of MARKS you can create is limited by the amount of
internal memory space allocated to your task.

¢ The size of the available slot limits the number of MARKSs a program
can have outstanding at any time. When the program no longer
requires a particular MARK, issue a FORGET command for the data-
item.

P26-8220-64

MARKS command

MARKS command

The MARKS command lists all open MARKSs and the views they are

marking.

MARKS

Example output

RDM Administration Guide

> MARKS

B33593
79551
H2233
CASH

MARK NAME

CusT
CusT
CusT
CusT

VI EW NAME

179

Chapter 7 Managing views with the DBAID commands

OPEN command

The OPEN command readies a stored or virtual view for use by DBAID.

.) O
OPEN [user-view-name=] 7 . Olcolumn, column,...]
[yiew - namep

user-view-name=
Description

Format

Considerations

Optional. Gives an existing view a name to be used in DBAID.

1-30 alphanumeric characters and the special characters #, -, and $.
The first character must be alphabetic or a special character. If the first
character is a special character, the second character must be
alphabetic.

¢ If you do not specify user-view-name, it will be the same name as the
view-name.

¢ You can use this method (together with the column parameter) to
create many smaller views from one common view.

¢ To OPEN a view that has not been listed or defined in the same
session of DBAID, the user must be related to the view in the
Directory.

o 0
0. 0
[yiew - name[j

Description
Format

Options

Consideration

180

Required. Specifies the view to be readied for use.
View-name must be the name of an existing view.

* Open the view you used most recently.
view-name Open the named view.

If there is a virtual view with the same name as a saved view, DBAID
uses the virtual view.

P26-8220-64

OPEN command

columny column, ...

Description Optional. ldentifies the column or list of columns to include in the user
view. If omitted, all columns in the view are in the user view.

Format The columns must be specified in the view being opened.

Consideration The list of column names may be continued on successive lines by
ending the line you are entering with a comma. The command USER-
LIST displays the list of columns used to open the view after it has been
opened.

General considerations

¢ The OPEN command returns a message showing the number of
bytes of memory used by the view:

nnnnn BYTES USED I N OPENI NG VI EW

This information can help determine run-time internal memory
requirements.

¢ Issuing an OPEN request on a view without first issuing a LIST
request opens the view with the user relations checked but without
the view definition text available to DBAID.

¢ If changes are made to a view, you must issue the RELEASE
command and OPEN the view to implement the changes.

Example This example will return only BRANCH-NO and BRANCH-NAME when
you do a GET, even though BRANCH-VIEW has more columns defined.

> OPEN BRANCH- NO- AND- NAME = BRANCH- VI EW BRANCH- NO, BRANCH- NAME

RDM Administration Guide 181

Chapter 7 Managing views with the DBAID commands

PAGESIZE command

The PAGESIZE command specifies the maximum number of lines to
display on a screen (in online DBAID) or on a page (in batch DBAID).

PAGESIZE [nnn]

number-of-lines

Description Optional. Specifies the maximum number of lines to display on a screen
(in online DBAID) or on a page (in batch DBAID).

Default 24
Format 2 or more numeric characters
Considerations
¢ The PAGESIZE number must be greater than 10.

¢ In an online environment, the PAGESIZE number cannot exceed the
screen capacity.

¢ If you omit the number from the PAGESIZE command, RDM displays
the current PAGESIZE number.

182 P26-8220-64

PERMIT command

PERMIT command

The PERMIT command permits specified users to use a view by relating
the view to the user(s) in the Directory.

r O [O O

PERMIT 7 . [juser-name; [[] [user —name2..[]

[yiew - namerj MmO g
[y O
0. O
[view - nameJ

Description Required. Specifies the view to be related to a user.

Format View-name must be the name of an existing view.
Options * Relate the view you used most recently.
view-name Relate the named view.

O O
user-name; [[] [USer —namez..[]
o

Description Required. The name(s) of the user(s) you are relating to the view in the
Directory. User names must be separated by a comma or a blank.

Format Each user-name must be the name of an existing user defined on the
Directory.

Consideration You can make this view available to all users by specifying the
*PUBLIC** user.

General considerations

¢ You can use the DBAID PERMIT command instead of using the
Directory Maintenance RELATE function.

¢ After successfully relating the view to each user, DBAID commits the
Directory update.

¢ If an error occurs while relating a user, DBAID backs out (resets) the
Directory update and terminates processing of the command.

¢ You can use this command only if your active environment
description specifies update access to the Directory.

RDM Administration Guide 183

Chapter 7 Managing views with the DBAID commands

PRINT-STATS command
The PRINT-STATS command causes RDM to print the current statistics.

PRINT-STATS

General considerations
¢ The STATS-ON command must precede the first PRINT-STATS
command. If you do not first issue STATS-ON, PRINT-STATS has
no effect.
¢ Issue a STATS-OFF to stop gathering statistics.
¢ RDM routes statistics output to the DMLPRINT output file.
¢ Use the PRINT-STATS command to keep a statistical running total.

Example In the following example, PRINT-STATS prints statistics after each
RDML operation:

> STATS- ON
> GET NEXT BRANCH- VI EW

v -

PRI NT- STATS
UPDATE BRANCH- VI EW

\%

v -

PRI NT- STATS

184 P26-8220-64

PUBLIC-DENY command

PUBLIC-DENY command

The PUBLIC-DENY command removes the relationship between the
specified views and the *PUBLIC** user on the Directory. A view not
related to the *PUBLIC** user can be used only by a user explicitly
related to that view.

. aBo . a
PUBLIC-DENY view-name; [] [view —name2..[]
|

g3 0

. OBo .
view-name; [T] [view —nhamez2..[]

(3 0

U
g

Description Required. Specifies the name(s) of the view(s) for which you want to
revoke public access.

Format Must be the name(s) of valid view(s) defined on the Directory. View
names must be separated by a comma or a blank.

General considerations

¢

¢

RDM Administration Guide

The *PUBLIC** user must be defined on the Directory.

You can use the DBAID PUBLIC-DENY command instead of using
Directory Maintenance to delete the relationship between the view
and the **PUBLIC** user.

You can use the PUBLIC-DENY command to remove the relationship
between the *PUBLIC** user and the view regardless of whether you
created the relationship with Directory Maintenance or the
PUBLIC-PERMIT command.

After successfully removing the relationship between each view and
the **PUBLIC** user, DBAID commits the Directory update.

If an error occurs while removing the relationship, DBAID backs out
(resets) the Directory update and terminates processing of the
command.

You can use this command only if your active environment
description specifies update access to the Directory.

Global views that are related to the **PUBLIC** user continue to be
accessible to all RDM users until RDM is reinitialized.

185

Chapter 7 Managing views with the DBAID commands

PUBLIC-PERMIT command

The PUBLIC-PERMIT command relates view(s) to the *PUBLIC** user
on the Directory. All RDM users can use views related to the **PUBLIC**
user.

. w0 . 0
PUBLIC-PERMIT view-name; []] [View —namez2..[]
|

O

. aBo . O
view-name; [T] [View —namez2..[]

186

g3 0

Description Required. Specifies the name(s) of the view(s) for which you want to
grant public access.

Format Each view-name must be the name of an existing view defined on the
Directory. View names must be separated by a comma or a blank.

General considerations

¢

¢

The *PUBLIC** user must be defined on the Directory.

You can use the DBAID PUBLIC-PERMIT command instead of using
the Directory Maintenance RELATE function to relate views to the
*PUBLIC** user.

After successfully relating each of the views to the *PUBLIC** user,
DBAID commits the Directory update.

If an error occurs while removing the relationship, DBAID backs out
(resets) the Directory update and terminates processing of the
command.

You can use this command only if your active environment
description specifies update access to the Directory.

Making the public views global improves performance.

P26-8220-64

PUBLIC-VIEWS command

PUBLIC-VIEWS command

The PUBLIC-VIEWS command lists the names and short text for the
views related to the **PUBLIC** user.

PUBLIC-VIEWS

Consideration The format of the display is identical to the display produced by the
VIEWS-FOR-USER DBAID command.

RDM Administration Guide 187

Chapter 7 Managing views with the DBAID commands

RELEASE command

The RELEASE command closes specified view(s) and releases the RDM
memory they occupy.

RELEASE = .

%iew -name]

hj 0
%iew - name%

Description Optional. Specifies the view to release.

Format View-name must be the name of an existing, opened view.
Options * Release the view you used most recently.
view-name Release the named view.

Consideration If you omit this parameter, the RELEASE command releases all of your
opened views.

General consideration

This command does not affect virtual view text of the view(s).

188 P26-8220-64

REMOVE command

REMOVE command

The REMOVE command removes the view definition text, its binding if
the view is bound, and the relation between the view and users,
procedures, external columns, and environment descriptions.

REMOVE [schema-name:] g E
[Yiew - namep

schema-name:
Description

Format

Consideration

Optional. ldentifies the schema where the view to be removed is defined.

Must be the name of an existing schema defined on the Directory. The
schema name must be followed by a colon.

If you omit this parameter, REMOVE uses the active schema.

o 0
a. 0
[yiew - namej

Description

Format

Options

Required. Specifies the view to remove.

View-name must be the name of an existing view that you have listed or
edited.

* Remove the view you used most recently.

view-name Remove the named view.

RDM Administration Guide 189

Chapter 7 Managing views with the DBAID commands

190

General considerations

Examples

¢

You must list the view before you can remove it. This protects you
from inadvertently removing views due to spelling errors.

DBAID automatically issues a COMMIT when the REMOVE
command completes successfully.

If an error occurs while modifying the Directory, DBAID automatically
issues a RESET and processing stops.

You can use this command only if your active environment
description specifies update access to the Directory.

The following removes all view definition text, binding, and relations
to the view PROD-VIEW in the Directory for the active schema. The
view is still a virtual view in DBAID.

> REMOVE PROD- VI EW
The following removes all view definition text, binding, and relations

to the view PROD-VIEW in the Directory for the schema
OTHERSCH. The active schema is unaffected.

> REMOVE OTHERSCH: PRCD- VI EW

P26-8220-64

RENUMBER command

RENUMBER command

The RENUMBER command renumbers a virtual view so that the line
numbering starts at ten, with each line incremented by ten.

RENUMBER H E
[yiew - namepj

o g
0. g
[view - namep

Description Required. Specifies the view to renumber.

Format View-name must be the name of an existing, opened view.
Options * Renumber the view you used most recently.
view-name Renumber the named view.

RDM Administration Guide 191

Chapter 7 Managing views with the DBAID commands

RESET command

The RESET command rolls back any database updates since the last
COMMIT point.

RESET

General considerations
¢ Use RESET only after unsuccessful RDML updates. The DBAID
default is to not automatically issue a RESET command when RDM
returns an X FSI. See the KEEP and ERASE commands.

¢ The system commands REMOVE, SAVE, BIND, PERMIT, and
DENY issue a reset if an error occurs while modifying the Directory.

¢ In batch mode with TLR, a RESET backs out any database updates
since the last COMMIT. It does not restart DBAID.

¢+ In batch mode without TLR, a RESET causes an intentional abend.

192 P26-8220-64

SAVE command

SAVE command

The SAVE command stores views in the Directory for either the active
schema or a specified schema. This command allows you to bind views
to improve open performance.

SAVE [schema-name:] g B[BIND]
[yiew - namepj

schema-name:
Description

Format

Consideration

Optional. ldentifies the schema in which the view to be saved is located.

Must be a valid schema defined on the Directory. The schema name
must be followed by a colon.

If you omit this parameter, SAVE uses the active schema.

[y O
0. O
[yiew - namepj
Description Required. Specifies the view to stored on the Directory.
Format View-name must be the name of an existing virtual view.
Options * Save the view you used most recently.
view-name Save the named view.
Consideration The view must have been created using one of the editing commands:
DEFINE, EDIT, or LIST.
BIND

Description

Optional. Indicates that you want to bind the view.

Considerations

¢+ RDM stores bindings on the Directory under the View entity in the
Directory. You can use all Directory Maintenance functions, except
LIST, on the bound view.

¢ See “View binding” on page 125 for more information on binding.

RDM Administration Guide 193

Chapter 7 Managing views with the DBAID commands

General considerations

Examples

194

¢

If the view you are saving already exists, the system asks if you want
to replace the existing view. If yes, the new view replaces the old
view on the Directory. If the view did not previously exist, you must
relate it to users before application programs can access it.

You can use this command only if your active environment
description specifies update access to the Directory.

When the SAVE completes successfully, DBAID automatically issues
a COMMIT. If you use the BIND option, DBAID issues a COMMIT at
the completion of the SAVE and the completion of the BIND.

If an error occurs while modifying the Directory, DBAID automatically
issues a RESET and processing stops.

The following stores BRANCH-VIEW'’s view definition under the
active schema:

> SAVE BRANCH- VI EW
The following stores BRANCH-VIEW'’s view definition under the
active schema and binds the view under the active schema:

> SAVE BRANCH- VI EW BI ND
The following stores BRANCH-VIEW'’s view definition under the
schema OTHERSC:

> SAVE OTHERSC: BRANCH- VI EW

P26-8220-64

SHOW-NAVIGATION command

SHOW-NAVIGATION command

The SHOW-NAVIGATION command displays the access strategies RDM
uses for entities (files/views) accessed in open views.

SHOW-NAVIGATION D, E
E(lew -namej

k] O

%iew - name%

Description

Format

Options

Consideration

Optional. Specifies the view for which you wish to display access
strategies.

View-name must be the name of an existing, opened view.

* Display access strategies for the view you used most
recently.
view-name Display access strategies for the named view.

You must first have used one of the following commands on the view:
DEFINE, EDIT, or LIST.

RDM Administration Guide 195

Chapter 7 Managing views with the DBAID commands

Example The following example shows the definition of a view, followed by a
SHOW-NAVIGATION command and the output of the command:

> DEFI NE BRANCH- BASE- VI EW

> 0100 KEY BRANCH- NO

> 0200 BRANCH- NAVE

> 0300 BRANCH- ADDR

> 0400 BRANCH-CI TY

> 0500 BRANCH- STATE

> 0600 BRANCH- ZI PCODE

> 0700 BRANCH- DEL - ROUTE

> 0800 BRANCH- SLS- QUOTA

> 0900 BRANCH- STF- QUOTA

> 1000 REQ BRANCH- REG ON = BRANCH REG ON = REG ON- NO
> 1100 ACCESS E$BR WHERE BRANCH- NO = BRANCH NO ALLOW ALL
> 1200 * REJECT | NSERT AND UPDATE OF BRANCH REG ON I F REG ON NOT VALID
> 1300 ACCESS E$RG ONCE WHERE REG ON-NO = BRANCH REG ON
> 1400 * REJECT DELETION OF A BRANCH THAT HAS CUSTOMERS
> 1500 ACCESS E$CU WHERE CUSTOVER- BRANCH = BRANCH- NO

> OPEN *

FSI: * VSI: = MG 4536 BYTES USED I N OPENI NG VI EW

> SHOW NAVI GATI ON

Example output

VI EWNAME BRANCH- BASE- VI EW

LVL ACCESSED FI LE/ VIEW NAME ACCESS METHOD ACCESS PATH NAME
0 E$BR KEYED E$BRCTRL

0 ESRG KEYED E$RGCTRL

1 E$CU | NDEXED E$CUSKO1

196 P26-8220-64

SIGN-OFF command

SIGN-OFF command
The SIGN-OFF command signs off the user from RDM.

SIGN-OFF

General considerations

¢ Use the SIGN-OFF command to sign off as an RDM user without
terminating the DBAID session.

¢ When you terminate the DBAID session with the BYE command,
RDM signs you off automatically. You need not issue a SIGN-OFF
command before BYE.

¢ The SIGN-OFF command turns off statistics.

RDM Administration Guide

197

Chapter 7 Managing views with the DBAID commands

SIGN-ON command

The SIGN-ON command identifies the user to RDM.

SIGN-ON user-name [:psbname] [password]

user-name
Description Required. Specifies the user.
Format Must be the name of an existing user defined on the Directory.
psbname
Restriction For use with IMS databases only.
Description Optional. Specifies the name of the Program Specification Block (PSB)
to be used to access IMS databases.
Format Must be the name of a PSB in the PSB library.
password
Description Optional. Specifies the user’s password.
Format Must be the password defined for the user on the Directory.

General considerations

Example

198

¢ In an online environment, you can issue SIGN-ON before entering
DBAID and you need not repeat it.

¢ In batch mode, the password field does not print on the output.

The following shows the user, JDOE, signing on with the password,
“DBAPSWD:”

> SIGN-ON JDOE DBAPSWD

P26-8220-64

STATS command

STATS command

The STATS command causes RDM to display online the current
statistics of all open views or on the view you specify. You can issue the
STATS command numerous times during a session after you have
issued a STATS-ON command.

k]

STATS
%iew -name

O
g
U

i 0
%iew - name%
Description
Format

Options

Optional. Specifies the view for which you wish to display statistics.
View-name must be the name of an existing, opened view.
* Display statistics for the view you used most recently.

view-name Display statistics for the named view.

General considerations

Example

¢ The STATS-ON command must precede the first STATS command;
if you do not issue STATS-ON first, STATS has no effect.

¢ You can issue a STATS-OFF to stop gathering statistics.
¢ STATS displays statistics on your online terminal.
¢ You can use the STATS command to keep a running total.

In the following example, STATS is used to display statistics after each
RDML operation:

> STATS- ON

> GET NEXT CUST

Vo

STATS
UPDATE CUST

\%

VA

STATS

RDM Administration Guide 199

Chapter 7 Managing views with the DBAID commands

STATS-OFF command

The STATS-OFF command causes RDM to print the current statistics,
and disables statistics gathering after printing.

STATS-OFF

General considerations
¢ The STATS-ON command must precede the STATS-OFF command.
¢ RDM routes statistics output to the DMLPRINT output file.

¢ Issuing the STATS-OFF command without a preceding STATS-ON
command has no effect.

¢ The BYE or SIGN-OFF commands turn statistics off without printing
them.

200 P26-8220-64

STATS-ON command

STATS-ON command

The STATS-ON command causes RDM to initialize the statistics to zero
and then begin gathering statistics on a user area. The DBA can use this
command in conjunction with the STATS-OFF, PRINT-STATS, or STATS
commands to examine what user views do on both a logical and physical
level.

STATS-ON

General considerations
¢+ RDM gathers statistics on a task basis, not on a systemwide basis.

¢ Use the STATS-OFF command to print statistics and then turn them
off.

¢ Use the PRINT-STATS command to print statistics and continue
gathering a running total.

¢ Use the STATS command to display statistics online and continue
gathering a running total.

¢ If you issue the BYE or SIGN-OFF command, RDM turns off your
statistics without printing them.

RDM Administration Guide 201

Chapter 7 Managing views with the DBAID commands

SURE command

The SURE command causes a COMMIT after each successful insert,
update, or delete. The SURE command causes RDM to automatically
issue a COMMIT if an RDML command returns an “*” FSI that alters the
database. This is the opposite of the CAUTIOUS command. This is the
default setting.

SURE

202 P26-8220-64

UNDEFINE command

UNDEFINE command

The UNDEFINE command removes a virtual view.

O g

UNDEFINE EALL E

B/iew - nameH
[y O
ALL]

B/iew - nameE

Description Required. Specifies which virtual view(s) to remove.

Options * Remove the virtual view whose name you used most
recently
ALL Remove all virtual views
view-name Remove the virtual view named.

General considerations

¢ The UNDEFINE command releases the memory used by the view,
allowing it to be reclaimed for defining other views. If storage is not
relinquished and no more space is available, DBAID issues a 2816
abend code the next time you issue an OPEN or LIST command.

¢ This command has no effect on a view definition saved on the
Directory.

¢ If you want to save a view and release its memory, issue SAVE
before UNDEFINE.

¢ If the view is currently open, the UNDEFINE command does not
“release” the space used by RDM for the view.

RDM Administration Guide 203

Chapter 7 Managing views with the DBAID commands

UPDATE command

The UPDATE command updates data values in the database.

r O . .
UPDATE]. Olcolumngy:=literal;,column,:=literal, ...]
[yiew - namepj

o g
0. g
[yiew - name[

Description Required. Specifies the view you want to update.

Format View-name must be the name of an existing, opened view.
Options * Update the view you used most recently.
view-name Update the named view.

204 P26-8220-64

UPDATE command

columny:=literal;,column,:=literal, ...

Description Optional. ldentifies column(s) in the view and their intended values.

Format columnn The name of an existing column in the view
literal Character data or numeric data

Considerations
¢

If you do not specify column name(s) in the UPDATE command,
DBAID displays the name of each column. Each time it displays the
name of an updateable column, it prompts you for a replacement
value. After processing all columns, DBAID displays the prompt
UPDATE (Y/N) and requires a response.

When DBAID prompts you for a replacement value in an online
environment, and you just press ENTER, the column’s original value
is unchanged. When DBAID prompts you for a replacement value in
batch mode, the contents of your next input record become the new
value, even if it is all blanks.

NOTE

0 o—

In batch mode, Cincom recommends you specify column names in
the UPDATE command.

RDM Administration Guide

If you specify column names in the UPDATE command, only the
values of the columns you specify are updated. All others remain the
same.

Do not use single quotes around numeric literals.

Single quotes are optional around character literals that contain
alphanumeric characters only (no spaces or special characters).

In online DBAID only, you must use single quotes to change the
value of a column to blanks. A literal of spaces (keyed in) must be in
single quotes. If you just press ENTER, you do not affect the
column’s value.

You cannot use the UPDATE function to modify key column values.

To UPDATE a row, you must first retrieve the row with the GET
command.

UPDATE can change only one row at a time. For example, to
change all PROD-CODES to T100, you must GET and UPDATE
each row individually.

205

Chapter 7 Managing views with the DBAID commands

General consideration
After an UPDATE, C and V are the only meaningful ASls.

Example This example shows two columns in the CUST-PROD view being
updated.

> UPDATE BRANCH BRANCH- NAME = QAKLEY, BRANCH REG ON = 333

206 P26-8220-64

USER-LIST command

USER-LIST command

The USER-LIST command displays the column list for the user view
named.

USER-LIST E*_ B
[yiew - namepj

O

By
0. g
[view - namep

Description

Format

Options

Example

Required. Specifies the view whose columns you want to list.
View-name must be the name of an existing, opened view.

* List the columns for the view you used most recently.
view-name List the columns for the named view.

This example shows a list of all the columns in the CUSTOMER user
view.

> USER- LI ST CUST

USER VI EW NAME : CUSTOVER

VI EW NAME : CUST

USER VI EW LI ST :

CUST- NO, CUSTOVER- NAME, CUSTOVER- ADDR, END.

RDM Administration Guide 207

Chapter 7 Managing views with the DBAID commands

VIEW-DEFN command

The VIEW-DEFN command displays a condensed description of a view.

VIEW-DEFN a

0
E{iew - name%

k]

g
%iew - name%

Description Optional. Specifies the view whose condensed description you want to

display.

Format View-name must be the name of an existing, opened view.

Options * Display description of the view you used most recently.
view-name Display description of the named view.

Consideration If you omit a view-name, RDM displays a condensed description of all
your open views.

Example
> VI EW DEFN
VI EW NAVE (+) CUSTOMER
I NS- ORDER (+) N
TOTAL- S| ZE (+) 93
TOTAL- FI ELDS (+) 10
TOTAL- LEVELS (+) 2
TOTAL- DELETABLE (+) 10
TOTAL- | NSERTABLE (+) 10
TOTAL- REPLACEABLE (+) 10
TOTAL- REQUI RED (+) 2
TOTAL- KEYS (+) 2
TOTAL- NONUNI QUE (+) 0
* % % ’\mE* * %

208 P26-8220-64

VIEWS command

VIEWS command

The VIEWS command displays all views currently active in DBAID.

VIEWS

General consideration
The information displayed with this command includes:

¢ User View Name of the user view.

¢ View Name of the view of which this user view is part.
¢ Status Indicates whether the user view is open or released.
Example

> VI EWB
USER VI EW VI EW STATUS
cus cusT OPENED
BRAN BRAN OPENED
BRANCH- VI EW BRANCH- NO RELEASED
I N\VOI CE I N\VOI CE OPENED

RDM Administration Guide 209

Chapter 7 Managing views with the DBAID commands

VIEWS-FOR-USER command

The VIEWS-FOR-USER command lists the names and short text for
each view related to the signed-on user or to the **PUBLIC** user.

210

VIEWS-FOR-USER

Consideration The VIEWS-FOR-USER command does not list any view more than
once, even if that view is related both to the signed-on user and to the

Example

*»*PUBLIC** user.

> VI EW5- FOR- USERS
VI EW NAVE

MANI FEST

VI EW CF MANI FEST | NFORNMATI ON
REGN

BRAN

DATE
SHORT DESCRI PTI ON

01/21/91

01/21/91
01/21/91
01/21/91
01/21/91
01/21/91

16:

16:
16:
16:
16:
16:

TI ME

45:

43

’\KRE*

P26-8220-64

8

Using the RDM reports

The RDM report utility generates reports about RDM views in the active
schema. (To track a user/view relationship across multiple schemas, you
must use Directory reports. For information about Directory reports, refer
to the SUPRA Server PDM and Directory Administration Guide (OS/390
& VSE), P26-2250.)

You specify three parameters for a report: Report type, View, and User.

You specify the RDM report(s) you want with the following report type

codes:
Code Meaning
A All Reports
C COBOL Programmer’s Report
D DBAs Report
E Impact of Change (Extract)
L PL/1 Programmer’s Report
P Both COBOL and PL/1 Programmer’s Reports
U End user Report
\% Views Used by Programs Report

RDM Administration Guide

211

Chapter 8 Using the RDM reports

212

If you specify USER=ALL and a single view, the printed report shows all
users for a view. If you specify VIEW=ALL and a single user, the report
shows all the views a particular user is able to access. If you specify a
single view and a single user, the report utility verifies that they are
related.

Your SUPRA Server libraries contain procedures and job control
language (JCL) samples for running RDM reports. Samples are subject
to change. See the SUPRA Server JCL library or source statement
library member TXJ$INDX for a list of JCL samples.

os/390|

See the SUPRA Server procedure library member TISSRDM for a list of
RDM procedures. See the SUPRA Server macro library or source
statement library member TX$$INDX for an index to the different kinds of
samples. For more information on JCL samples, refer to the SUPRA
Server PDM and Directory Administration Guide (OS/390 & VSE),
P26-2250.

P26-8220-64

DBA report

DBA report

The DBA Report helps you keep track of the views you have defined in
the Directory and also the users of those views. The DBA Report
consists of the following:

¢

RDM Administration Guide

TITLE. Report title includes the date and time the report was
generated and the schema name which the report includes.

VIEW. The name of the view being described.
LAST UPDATE. The time and date of the last update to this view.

THIS VIEW IS NOT BOUND. A message indicating the view is not
bound.

THIS VIEW IS BOUND. A message indicating the view is bound.

ACCESS SET. The view definition, including column and access
definitions, as defined on the Directory.

COLUMN. Lists each column in the view.

FROM. If reporting on a base view, EXT FIELD = lists the external
field this column maps to. If reporting on a derived view, COLUMN =
lists the column that this column maps to in another view.

IN. If reporting on a base view, PHY FIELD = displays the physical
field name, and FILE = lists the file name. RC = lists the record
code, if applicable. If reporting on a derived view, VIEW = lists the
view name the view accesses.

USERS. Lists the users to whom this view is related.

213

Chapter 8 Using the RDM reports

The following code listing shows a sample DBA Report.

SUPRA RDM DI RECTORY REPORTS LEVEL nnnn COPYRI GHT 19nn CSI - ALL RI GHTS RESERVED 14:46: 39 04-01-1991 PAGE 2
*** RELATI ONAL DATA MANAGER DBA REPORT FOR SCHEMA BURRYSCH ***
SUPRA RDM DI RECTORY REPORTS LEVEL nnnn COPYRI GHT 19nn CSI - ALL RIGHTS RESERVED 14:46:39 04-01-1991 PAGE 160
*** RELATI ONAL DATA MANAGER DBA REPORT FOR SCHEMA BURRYSCH ***
LOG CAL VI EW SUPPLI ERS- BY- PRODUCT
LAST UPDATE : 08:15:50 03-25-1991
THI'S LOG CAL VIEW IS NOT BOUND.

ACCESS SET:
100 KEY PRODUCT- CODE
200 PRODUCT- DESC
300 PRODUCT- PRI CE
400 PRODUCT- VW4 QNTY
500 VS- NO- SUPPLI ER
600 VS- NO- PART- NO
700 VS- NO- PART- COST
800 SUPPLI ER- NAVE
900 SUPPLI ER- ADDR
1000 SUPPLI ER-CI TY
1100 SUPPLI ER- STATE
1200 SUPPLI ER- ZI PCODE

1300 ACCESS E$PD WHERE PRODUCT- CODE = PRODUCT- CODE
1400 ACCESS E$VS WHERE VS- NO- PRODUCT = PRODUCT- CODE
1500 ACCESS E$SU WHERE SUPPLI ER-NO = VS- NO- SUPPLI ER

COLUWN FROM I'N
PRODUCT- CODE EXT FI ELD = PRODUCT- CCDE PHY FI ELD = E$PDCTRL FILE = E$PD RC =
PRODUCT- DESC EXT FI ELD = PRODUCT- DESC PHY FI ELD = E$PDDESC FI LE = E$PD RC =
PRODUCT- PRI CE EXT FI ELD = PRODUCT- PRI CE PHY FI ELD = E$PDPRCE FI LE = E$PD RC =
PRODUCT- WH ONTY EXT FI ELD = PRODUCT- WH QNTY PHY FI ELD = ESPDWQTY FILE = E$PD RC =
VS- NO- SUPPLI ER EXT FI ELD = VS-NO SUPPLI ER PHY FI ELD = EVSESU FI LE = E$VS RC =
VS- NO- PART- NO EXT FI ELD = VS- NO- PART- NO PHY FI ELD = E$VSNUMB FI LE = E$VS RC =
VS- NO- PART- COST EXT FI ELD = VS- NO- PART- COST PHY FI ELD = E$VSVCST FILE = E$VS RC =
SUPPLI ER- NAMVE EXT FI ELD = SUPPLI ER- NAME PHY FI ELD = E$SUNAME FI LE = E$SU RC =
SUPPLI ER- ADDR EXT FI ELD = SUPPLI ER- ADDR PHY FI ELD = E$SUADDR FI LE = E$SU RC =
SUPPLI ER-CI TY EXT FIELD = SUPPLIER-CI TY PHY FIELD = E$SUCI TY FILE = E$SU RC =
SUPPLI ER- STATE EXT FI ELD = SUPPLI ER- STATE PHY FI ELD = E$SUSTAT FILE = E$SU RC =
SUPPLI ER- ZI PCODE EXT FI ELD = SUPPLI ER- ZI PCODE PHY FI ELD = E$SUZI PC FI LE = E$SU RC =

USERS

Cl NCoM

EDUCATI ON

STUDENT

TID

214 P26-8220-64

Programmer’s report

Programmer’s report
The Programmer’s Report provides a programmer with all necessary
information about a view. Both COBOL and PL/1 programmers can
produce this report. The Programmer’s Report provides this information
for each column in the view:
¢ View name
¢ Field (Column) type
- KEY
- NONUNIQUE KEY
- CONST
- REQUIRED
¢ Field (Column) name

¢ Field type declaration

- The picture clause (generated by the RDM COBOL
preprocessor)

- The DECLARE clause (generated by the RDM PL/1
preprocessor)

¢ Description—Any text information

The programmer uses the column type information when constructing
keyed GETs or in determining which columns to subset when creating a
user view.

The DBA can include any type of text information in defining the view, for
example, to give special instructions on how to use the view The
following code listing shows a COBOL Programmer’s Report. A PL/1
Programmer’s Report follows this example.

RDM Administration Guide 215

Chapter 8 Using the RDM reports

SUPRA RDM DI RECTORY REPORTS LEVEL nnnn COPYRI GHT 19nn CSI-ALL RI GHTS RESERVED 14:46:39 04-01-1991 PAGE 329

FI ELD TYPE

KEY

** ok

RELATI ONAL DATA MANAGER COBOL PROGRAMMER S REPORT FOR SCHEMA BURRYSCH ***
LOGA CAL VI EW SUPPLI ERS- BY- PRODUCT

FI ELD NAVE
PRODUCT- CODE
PRODUCT- DESC
PRODUCT- PRI CE
PRODUCT- WH QNTY
VS- NO- SUPPLI ER
VS- NO- PART- NO
VS- NO- PART- COST
SUPPLI ER- NAVE
SUPPLI ER- ADDR
SUPPLI ER-CI TY
SUPPLI ER- STATE

SUPPLI ER- ZI PCODE

PI CTURE
X(009)
X(030)
9(07) V9(02)
9(05)
X(006)
X(020)
9(07) V9(02)
X(020)
X(020)
X(013)
X(002)
9(05)

DESCRI PTI ON

BURRYS PRODUCT

BURRYS PRODUCT

BURRYS PRODUCT

BURRYS PRODUCT

BURRYS PRODUCT

BURRYS PRODUCT

BURRYS PRODUCT

BURRYS PRODUCT

BURRYS PRODUCT

BURRYS PRODUCT

BURRYS PRODUCT

BURRYS PRODUCT

I DENTI FI ER

I DENTI FI ER

I DENTI FI ER

I DENTI FI ER

I DENTI FI ER

I DENTI FI ER

I DENTI FI ER

I DENTI FI ER

I DENTI FI ER

I DENTI FI ER

I DENTI FI ER

I DENTI FI ER

SUPRA RDM DI RECTORY REPORTS LEVEL nnnn COPYRI GHT 19nn CSI-ALL RI GHTS RESERVED 14:46:39 04-01-1991 PAGE 330

* kK

RELATI ONAL DATA MANAGER COBOL PROGRAMMER S REPORT FOR SCHEMA BURRYSCH ***

LOGA CAL VI EW SUPPLI ERS- BY- PRODUCT- W

FI ELD TYPE

KEY

KEY

216

FI ELD NAVE
PRODUCT- CODE
PRODUCT- DESC
PRODUCT- PRI CE
PRODUCT- WH QNTY
VS- NO- SUPPLI ER
VS- NO- PART- NO
VS- NO- PART- COST
SUPPLI ER- NAVE
SUPPLI ER- ADDR
SUPPLI ER-CI TY
SUPPLI ER- STATE

SUPPLI ER- ZI PCODE

PI CTURE
X(009)
X(030)
9(07) V9(02)
9(05)
X(006)
X(020)
9(07) V9(02)
X(020)
X(020)
X(013)
X(002)
9(05)

DESCRI PTI ON

BURRYS PRODUCT

BURRYS PRODUCT

BURRYS PRODUCT

BURRYS PRODUCT

BURRYS PRODUCT

BURRYS PRODUCT

BURRYS PRODUCT

BURRYS PRODUCT

BURRYS PRODUCT

BURRYS PRODUCT

BURRYS PRODUCT

BURRYS PRODUCT

I DENTI FI ER

I DENTI FI ER

I DENTI FI ER

I DENTI FI ER

I DENTI FI ER

I DENTI FI ER

I DENTI FI ER

I DENTI FI ER

I DENTI FI ER

I DENTI FI ER

I DENTI FI ER

I DENTI FI ER

P26-8220-64

Programmer’s report

SUPRA RDM DI RECTORY REPORTS LEVEL nnnn COPYRI GHT 19nn CSI-ALL RI GHTS RESERVED 14:46:39 04-01-1991 PAGE 497
*** RELATI ONAL DATA MANAGER PL/1 PROGRAMMER S REPORT FOR SCHEMA BURRYSCH ***
LOGA CAL VI EW SUPPLI ERS- BY- PRODUCT

FI ELD TYPE
FI ELD NAVE DECLARE DESCRI PTI ON

KEY PRODUCT- CODE CHAR(9) BURRYS PRCDUCT | DENTI FI ER
PRODUCT- DESC CHAR(30) BURRYS PRCDUCT | DENTI FI ER
PRODUCT- PRI CE PIC ' (7)9Vv99' BURRYS PRCDUCT | DENTI FI ER
PRODUCT- WH ONTY PIC ' (4)99 BURRYS PRCDUCT | DENTI FI ER
VS- NO- SUPPLI ER CHAR(6) BURRYS PRCDUCT | DENTI FI ER
VS- NO- PART- NO CHAR(20) BURRYS PRCDUCT | DENTI FI ER
VS- NO- PART- COST PIC ' (7)9Vv99' BURRYS PRCDUCT | DENTI FI ER
SUPPLI ER- NAMVE CHAR(20) BURRYS PRCDUCT | DENTI FI ER
SUPPLI ER- ADDR CHAR(20) BURRYS PRCDUCT | DENTI FI ER
SUPPLI ER-CI TY CHAR(13) BURRYS PRCDUCT | DENTI FI ER
SUPPLI ER- STATE CHAR(2) BURRYS PRCDUCT | DENTI FI ER
SUPPLI ER- ZI PCODE PIC ' (4)99 BURRYS PRCDUCT | DENTI FI ER

SUPRA RDM DI RECTORY REPORTS LEVEL nnnn COPYRI GHT 19nn CSI-ALL RI GHTS RESERVED 14:46:39 04-01-1991 PAGE 498
*** RELATI ONAL DATA MANAGER PL/1 PROGRAMMER S REPORT FOR SCHEMA BURRYSCH ***
LOG CAL VI EW SUPPLI ERS- BY- PRODUCT- W

FI ELD TYPE
FI ELD NAVE DECLARE DESCRI PTI ON

KEY PRODUCT- CODE CHAR(9) BURRYS PRCDUCT | DENTI FI ER
PRODUCT- DESC CHAR(30) BURRYS PRCDUCT | DENTI FI ER
PRODUCT- PRI CE PIC ' (7)9Vv99' BURRYS PRCDUCT | DENTI FI ER
PRODUCT- WH ONTY PIC ' (4)99 BURRYS PRCDUCT | DENTI FI ER

KEY VS- NO- SUPPLI ER CHAR(6) BURRYS PRCDUCT | DENTI FI ER
VS- NO- PART- NO CHAR(20) BURRYS PRCDUCT | DENTI FI ER
VS- NO- PART- COST PIC ' (7)9Vv99' BURRYS PRCDUCT | DENTI FI ER
SUPPLI ER- NAVE CHAR(20) BURRYS PRCDUCT | DENTI FI ER
SUPPLI ER- ADDR CHAR(20) BURRYS PRCDUCT | DENTI FI ER
SUPPLI ER-CI TY CHAR(13) BURRYS PRCDUCT | DENTI FI ER
SUPPLI ER- STATE CHAR(2) BURRYS PRCDUCT | DENTI FI ER
SUPPLI ER- ZI PCODE PIC ' (4)99 BURRYS PRCDUCT | DENTI FI ER

RDM Administration Guide 217

Chapter 8 Using the RDM reports

End user report

218

The End User Report is an abbreviated report intended for the non-
technical end user, for example, the SPECTRA user. It provides this

information:

¢ View name

¢ Users related to view

¢ Sequence number of each column

¢ Column name

¢ Column description (from the short text on the Directory)

P26-8220-64

The following code sample shows an End User Report:

SUPRA RDM DI RECTORY REPORTS LEVEL nnnn COPYRI GHT 19nn CSI-ALL RI GHTS RESERVED 14: 46: 39
*** RELATI ONAL DATA MANAGER END USER REPORT FOR SCHEMA BURRYSCH ***
USER. TJD
LOG CAL VI EW SUPPLI ERS- BY- PRODUCT

SEQ# COLUWN NAME DESCRI PTI ON

1 PRODUCT- CODE BURRYS PRCDUCT | DENTI FI ER

2 PRODUCT- DESC BURRY' S PRODUCT DESCRI PTI ON

3 PRODUCT- PRI CE CURRENT SELLING PRI CE OF BURRY' S PRODUCT
4 PRODUCT- VW4 QNTY QUANTI TY OF PRODUCTS | N WAREHOUSE
5 VS- NO- SUPPLI ER SUPPLI ER(VENDOR) | DENTI FI ER

6 VS- NO- PART- NO VENDOR' S PRCDUCT | DENTI FI ER

7 VS- NO- PART- COST VENDOR' S PRCDUCT COST

8 SUPPLI ER- NAVE NAMVE OF SUPPLI ER

9 SUPPLI ER- ADDR STREET ADDRESS OF SUPPLI ER

0 SUPPLI ER-CI TY CI TY LOCATI ON OF SUPPLI ER

1 SUPPLI ER- STATE STATE WHERE SUPPLI ER RESI DES

2 SUPPLI ER- ZI PCODE PCSTAL LOCALE OF SUPPLI ER

SUPRA RDM DI RECTORY REPORTS LEVEL nnnn COPYRI GHT 19nn CSI-ALL RI GHTS RESERVED 14: 46: 39
*** RELATI ONAL DATA MANAGER END USER REPORT FOR SCHEMA BURRYSCH ***
USER. TJD
LOG CAL VI EW SUPPLI ERS- BY- PRODUCT- W

SEQ# COLUWN NAVE DESCRI PTI ON

1 PRODUCT- CODE DERI VED FROM VI EW PRCD
2 PRODUCT- DESC DERI VED FROM VI EW PRCD
3 PRODUCT- PRI CE DERI VED FROM VI EW PRCD
4 PRODUCT- WH ONTY DERI VED FROM VI EW PRCD
5 VS- NO- SUPPLI ER DERI VED FROM VI EW VSNO
6 VS- NO- PART- NO DERI VED FROM VI EW VSNO
7 VS- NO- PART- COST DERI VED FROM VI EW VSNO
8 SUPPLI ER- NAMVE DERI VED FROM VI EW SUPP
9 SUPPLI ER- ADDR DERI VED FROM VI EW SUPP
10 SUPPLI ER-CI TY DERI VED FROM VI EW SUPP
11 SUPPLI ER- STATE DERI VED FROM VI EW SUPP
12 SUPPLI ER- ZI PCODE DERI VED FROM VI EW SUPP

RDM Administration Guide

End user report

04-01-1991 PAGE 653

04-01-1991 PAGE 654

219

Chapter 8 Using the RDM reports

Impact of change report

The Impact of Change Report reports any changes you make to files or
base views that can impact derived views, application programmers, or
SPECTRA users. The Impact of Change Report is divided into three
separate reports:

¢

¢

¢

Files Impacting Views
Views Impacting Views

Views Impacting Programs

Files impacting views report

The Files Impacting Views report describes physical changes to files that
may impact base or derived views. This report contains the following
information:

¢

¢

220

Physical file name

Record code

Physical Field name

External Field name

Column name

View Name

D—File directly impacts this view

|I—File indirectly impacts this view (the column is derived from
another view)

P26-8220-64

Impact of change report

The following code sample shows a Files Impacting Views Report:

TI SXA RDM DI RECTORY REPORTS COPYRI GHT 19nn CSI

- ALL RIGHTS RESERVED 16:13: 35

*** LOG CAL VI EW I MPACT OF CHANGE REPCORT FOR FILES | MPACTI NG VI EW6

FILE : E$PD

RECORD CODE PHYSI CAL
FI ELD
E$PDCTRL
E$PDDESC

RDM Administration Guide

EXTERNAL
FI ELD

PRODUCT- CODE

PRODUCT- DESC

COLUWN NAME

I NVLI NE- PRODUCT
I NVLI NE- PRODUCT
I NVLI NE- PRODUCT
I NVLI NE- PRODUCT
MANLI NE- PRODUCT
MANLI NE- PRODUCT
PRODUCT- CODE
PRODUCT- CODE
PRODUCT- CODE
PRODUCT- CODE
PRODUCT- CODE
PRODUCT- CODE
PRODUCT- CODE
PRODUCT- CODE
PRODUCT- CODE
PRODUCT- CODE
PRODUCT- CODE
PRODUCT- CODE
PRODUCT- CODE
STOCK- PRODUCT
STOCK- PRODUCT
STOCK- PRODUCT
STOCK- PRODUCT
STRUCTURE- ASSM
STRUCTURE- ASSM
VS- NO- PRODUCT
VS- NO- PRODUCT
PRODUCT- DESC
PRODUCT- DESC
PRODUCT- DESC
PRODUCT- DESC
PRODUCT- DESC
PRODUCT- DESC
PRODUCT- DESC
PRODUCT- DESC
PRODUCT- DESC
PRODUCT- DESC
PRODUCT- DESC
PRODUCT- DESC
PRODUCT- DESC

VI EW NAVE

ADD- | NVOI CE- W

I NVL

I NvO CE- W

W- | NV- W

MANI FEST- W

MANL

Bl LL

BRANCH- STOCK- BY- PRODUCT

BRANCH- STOCK- BY- PRODUCT- W

MAI'N- WAREHOUSE- | NVEN- W
MAI'N- WAREHOUSE- | NVENTORY
PROD

PROD- SUPP- W

PRODUCT- PURCHASE- | NFO- W
SUPPLI ERS- BY- PRODUCT
SUPPLI ERS- BY- PRODUCT- W
VERI FY- PRODUCT

VERI FY- PRODUCT- W

W- PROD

BRANCH- STOCK- W

REG ONAL- SHI PPI NG W
STCK

UPDATE- STOCK- W

MAI'N- WAREHOUSE- | NVEN- W
STRU

VENDOR- STOCK- NUMS- W
VSNO

ADD- | NVOI CE- W

BRANCH- STOCK

BRANCH- STOCK- BY- PRODUCT

BRANCH- STOCK- BY- PRODUCT- W

BRANCH- STOCK- W

I NVvO CE

I NvO CE- W

MAI'N- WAREHOUSE- | NVEN- W
MAI'N- WAREHOUSE- | NVENTORY
MANI FEST

MANI FEST- W

PO- BY- DATE

PRCD

06/ 02/ 87

TYPE OF

|vAvinsviviaialvA N vivivivialiv A v A v A v A viv AR vivAv A v A

I MPACT

221

Chapter 8 Using the RDM reports

222

Views impacting views report

The Views Impacting Views Report describes changes to base views that
impact derived views. This report contains the following information:

¢ Impacting view name (base view)
¢ Impacted view name

¢ D—Impactis direct

¢ |—Impactis indirect

If a view is not derived from any other views, the following information
appears on the report:

¢ View name
¢ Message: NO IMPACTING VIEWS

Views derived from views that do not themselves impact views are not
listed.

The following listing shows a Views Impacting Views Report. In the
example, impact is direct (D) for all views beginning with ADD-INVOICE-
VV through VERIFY-PRODUCT-VV. The type of impact prints on the
report only when it changes. If the TYPE OF IMPACT field is blank for a
particular view, assume it is the same as the most recent impact printed.

P26-8220-64

Impact of change report

TI S/ XA RDM DI RECTCRY REPORTS COPYRI GHT 19nn CSI - ALL RI GHTS RESERVED 16:13:35 06/ 02/ 87
*** LOG CAL VI EW | MPACT OF CHANGE REPORT FOR VI EWS | MPACTI NG VI EWS
VIEW: PROD

| MPACTED VI EW NAVE TYPE OF | MPACT

NO | MPACTI NG VI EW8

ADD- | NvOl CE- W D
BRANCH- STOCK- BY- PRODUCT- W

BRANCH- STOCK- W

I N\vO CE- W

MAI N- WAREHOUSE- | NVEN- W

MANI FEST- W

PROD- SUPP- W

PRODUCT- PURCHASE- | NFO- W

REG ONAL- SHI PPI NG W

SUPPLI ERS- BY- PRODUCT- W

UPDATE- STOCK- W

VENDOR- STOCK- NUMS- W

VERI FY- PRODUCT- W

W- 1 NV- W |
WW- PROD D

Views impacting programs report
The Views Impacting Programs report is indexed by view and lists all
programs that use a view. When you change a view definition, use this
report to find any affected programs. This report contains the following
information:
¢ Impacting view name
¢ Program name
¢ D—Impactis direct

¢ |—Impactis indirect

RDM Administration Guide 223

Chapter 8 Using the RDM reports

Views used by programs report

When an RDM processor processes applications, they are enrolled in the
Directory and automatically related to the views they use. The Views
Used by Programs Report provides a list of programs each view uses
and the following information:

¢+ View name

<*

All programs that use that name

¢ Date the view was last updated

¢ Time the view was last updated

The following listing shows a Views Used by Programs Report:

SUPRA RDM DI RECTORY REPORTS LEVEL nnnn COPYRI GHT 19nn CSI - ALL RI GHTS RESERVED 14: 46: 39
04-01-1991

PAGE 695
*** RELATI ONAL DATA NMANAGER VI EWs USED BY PROGRAMS REPORT FOR SCHEVA BURRYSCH ***

LOG CAL VI EWS PROGRAMS DATE UPDATED TI ME UPDATED
SUPPLI ERS- BY- PRODUCT **** NO PROCEDURES RELATED TO THI S LOG CAL VIEW ****
SUPPLI ERS- BY- PRODUCT- W **** NO PROCEDURES RELATED TO THI S LOG CAL VI EW ****

224 P26-8220-64

9

Configuring the RDM for your
environment

Overview of configuring the RDM for your environment

This chapter tells you how to find the information to configure and use
RDM in your operating environment (under the operating system and
teleprocessing monitor you use). This chapter also lists the RDM
modules by operating system and summarizes the new and different
RDM characteristics.

Your SUPRA Server libraries contain procedures and job control
language (JCL) samples for running RDM-related jobs in your operating
environment. Samples are subject to change. See the SUPRA Server
JCL library or source statement library member TXJSINDX for a list of
JCL samples.

05/390| See the SUPRA Server procedure library member TISSRDM for a list of
RDM procedures. See the SUPRA Server macro library or member
TX$$INDX for an index to the different kinds of samples.

<
(7))
m

See the SUPRA Server RDM sublibrary member TXJ$INDX for a list of
JCL. The sample job to assemble and link the options module can be
found in that list.

See your SUPRA Server Installation Guide for the latest information
relevant to your installation, and for specific instructions on linking,
initializing, and bringing up RDM the first time.

Refer to the SUPRA Server OS/390 Installation Guide, P26-0149, or the
SUPRA Server VSE Installation Guide, P26-0132, for information on the
resources (memory and disk space) requirements and usage for RDM
and other SUPRA Server components under your operating environment.

RDM Administration Guide 225

Chapter 9 Configuring the RDM for your environment

See “Setting the online RDM options with macros” on page 261 for
information on how to set RDM memory options and other options with
the RDM macro C$VOOPTM.

You must process your COBOL or PL/1 RDM application program source
code with the RDML precompiler before you compile the code with the
standard COBOL or PL/1 compiler. Refer to the RDM programming
guides for information on creating, precompiling, compiling, linking, and
running RDM application programs:

¢ SUPRA Server PDM RDM COBOL Programming Guide (OS/390 &
VSE), P26-8330

¢ SUPRA Server PDM RDM PL/1 Programming Guide (OS/390 &
VSE), P26-8331

The implementation of online RDM under OS/390/XA, OS/390/ESA or
VSE/ESA differs from other versions of RDM in that it takes advantage of
extended memory (memory above the 16 MB line):

¢ It allocates task work memory in separate heaps and stacks rather
than in slots. It allows the heaps to be allocated in extended
memory. (One heap and one stack are the equivalent of one slot.
One active task employs one heap and one stack. The stack is in
storage only for the life of an RDML command.)

¢ It allows the allocation of global views in extended memory.
¢ Itloads the largest part of RDM, the resident module (CSVNVRES),

in extended memory. The table on the following page lists and briefly
describes each of the major modules in RDM.

226 P26-8220-64

Overview of configuring the RDM for your environment

0S/390 online 0S/390 batch VSE online VSE batch

load module load module phase phase Description

CSVCOBPP CSVCOBPP CSVCOBPP CSVCOBPP COBOL preprocessor

CSVPL1PP CSVPL1PP CSVPL1PP CSVPL1PP PL/1 preprocessor

n/a CSVIBDBA n/a CSVJBDBA Batch DBAID Support

n/a CSVIBINT n/a CSVJBINT Batch RDM Support

CSVLVDBA CSVLVDBA CSVLVDBA CSVLVDBA DBAID mainline

CSVNVRES CSVLVRES CSVNVRES CSVLVRES Reentrant component of
RDM mainline

CSVNVRUN CSVLVRUN CSVNVRUN CSVLVRUN Nonreentrant
component of RDM
mainline

CSVODBA n/a CSVODBA n/a CICS DBAID Support

CSVOPLVS n/a CSVOPLVS n/a CICS Program Interface

CSVNDATB n/a CSVNDATB n/a CICS PDM Support

CSVNVSAM n/a CSVNVSAM n/a VSAM Support—CICS

n/a CSVIVSAM n/a CSVJIVSAM VSAM Support—Batch

n/a CSVUREPT n/a CSVUREPT RDM Directory Report
Mainline

n/a CSVILUV n/a CSVJLUV Batch Program Interface

CSVOSVS
(Alias)
CSVIOSVS
(Alias)

CSVNICIC n/a CSVNICIC n/a CICS Program Interface

CSVNPLVS n/a CSVNPLVS n/a CICS RDM Support

CSVNRDIN n/a CSVNRDIN n/a RDM START/STOP
Processing

CSVXRSSO n/a CSVXRSSO n/a RESET/SINOF
Processing

RDM Administration Guide

227

Chapter 9 Configuring the RDM for your environment

Configuring the RDM XA storage

228

Task context is allocated in a separate heap and stack. You specify
heaps and stacks in the options module, CSVOOPTM (0OS/390) or
CSVDOPTM.A (VSE). See “Customizing the RDM processing with user
exits” on page 237 for information about coding these options.

Heaps store view context and can be allocated above the 16 MB line.
Heap storage is required for every RDM CICS transaction, and is
retained until the transaction signs off of RDM. All heap storage is
allocated during RDM initialization. The size and number of heaps is
determined by the options module CSVOOPTM (0S/390) or
CSVDOPTM.A (VSE). If more tasks sign on to RDM than there are
available heaps, heap storage is rolled to auxiliary temporary storage for
pseudoconversational tasks.

Stacks store task context for the PASCAL routines of RDM. Stacks are
always allocated below the 16 MB line. Stack storage is required for
every RDM CICS task. The storage is allocated when the task issues its
first RDML and is released when the task either issues an RDML sign-off
or detaches. Stacks are allocated from the CICS dynamic storage area
(DSA).

The global view pool size is also defined in the options module
CSVOOPTM or CSVDOPTM.A. Since the pool can be allocated above
the 16 MB line, you should specify a size large enough to accommodate
the number of views you want to remain in memory. After global views
are opened, all unused memory in the pool is released.

Heaps and the global view pool are acquired from storage managed by
the operating system (GETMAIN with OS/390, GETVIS with VSE). The
available space will be the size of your CICS region minus the DSASZE
operand you specify in the System Initialization Table (SIT). Refer to the
SUPRA Server PDM CICS Connector Systems Programming Guide
(OS/390 & VSE), P26-7452, for additional information about calculating
storage.

The options module also defines whether to allocate RDM CICS storage
above or below the 16 MB line. If you run the Physical Data Manager
(PDM) in the attached mode, you must allocate RDM CICS storage below
the line. Refer to the SUPRA Server PDM Tuning Guide (OS/390 &
VSE), P26-0225, for additional information about defining task and global
view storage.

P26-8220-64

Interaction of options parameters

Interaction of options parameters

The various SUPRA Server options in a CICS environment include the
interaction of parameters among the following:

¢

¢

RDM Administration Guide

The SUPRA Server active environment description

The SUPRA Server CICS Connector Options table

The SUPRA Server CICS Connector OPER CONNECT request
The RDM C$VOOPTM macro and the options module

The IBM CICS system SIT values

229

Chapter 9 Configuring the RDM for your environment

230

Environment description parameters

A central PDM operates under control of an active environment
description. You identify this active environment description in the
REALM parameter of the CSIPARM file (ENVDESC=). The active
environment description supplies three values:

¢ Maximum Connected Interfaces value. This value sets the limit for
the maximum number of regions/partitions that can communicate
with a central PDM. PDM connects one interface for each
region/partition when it identifies itself via a sign-on or connect
request. An interface remains connected until the region/partition
severs the connection. A CICS system uses one interface.

¢ Maximum Signed On Tasks value. This value sets the total
number of tasks that the central PDM can service throughout the
system.

¢ Maximum Connected Threads value. This value sets the limit on
the number of concurrent PDML requests that PDM will service. The
PDM allocates a thread to a PDM task while a PDML is being
serviced. The thread is freed when the PDML completes.

For each CICS interface, a THREADS parameter can be specified on the
OPER CONNECT request. This number represents a subset of the
Maximum Connected Threads in the active environment description.

In a CICS system, the default value for THREADS is the CSTXOPRM
THREADS parameter. (In the following discussion when the
CSTXOPRM THREADS value is mentioned, it is understood that a given
OPER CONNECT can set a different value.) This parameter value sets
the maximum number of PDMLs the PDM can service concurrently for
that CICS system. When CICS issues its OPER CONNECT, PDM
attempts to reserve this number of threads for that interface. If the limit
of PDM threads from the active environment description has been
exceeded, the OPER CONNECT fails with a PDM IPAR status. The
threads in a CICS interface remain reserved for that CICS until CICS
issues an OPER DISCONNECT which releases the threads as well as
the tasks and interface.

P26-8220-64

Interaction of options parameters

The connect/sinon process

In a CICS environment, the CICS system must connect its interface to
the PDM before any CICS transaction is allowed to issue any PDML calls.
Before the interface is connected, every PDML issued by a CICS
transaction will receive a PDM NOTO status instead of the requested
service. The connection of the interface occurs in the CICS Connector
component of SUPRA Server; the connect request is invoked either
automatically, using standard CICS initialization features, or manually,
after CICS has initialized. Both methods involve issuing the OPER
transaction with the CONNECT subfunction. OPER CONNECT connects
one interface between a CICS and a central PDM. If the number of
connected interfaces in the system reaches the Maximum Connected
Interfaces value, the OPER CONNECT request receives a PDM IPAR
status instead of connecting the interface.

RDM Administration Guide 231

Chapter 9 Configuring the RDM for your environment

232

OPER CONNECT parameters

An OPER CONNECT request specifies a TASKS parameter. The default
value for this parameter is the CSTXOPRM TASKS parameter.
(CSTXOPRM is the macro for generating the SUPRA Server CICS
Connector CSTXOTBL module. However, a given OPER CONNECT can
set a different value than is defined in CSTXOPRM.) When PDM services
an OPER CONNECT, it attempts to reserve a number of task entries as
specified in the TASKS parameter for the CICS interface. The TASKS
parameter value sets the maximum number of tasks allowed to sign on to
the PDM in that CICS region. This is the maximum number of
transactions in a CICS that can issue a PDML SINON without issuing a
matching PDML SINOF. If the number of PDM tasks signed on or
reserved exceeds the maximum signed on tasks value in the active
environment description, the OPER CONNECT fails with a PDM IPAR
status. Once an OPER CONNECT succeeds, transactions within a CICS
can sign on to the PDM, up to the limit imposed by CSTXOPRM TASKS.
Once this limit is reached, the next transaction within that CICS
attempting a PDML SINON receives a PDM CFUL status. A CICS
interface remains connected and all its PDM tasks remain reserved until
the interface is disconnected. The OPER DISCONNECT releases all the
tasks reserved for that interface and disconnects the interface.

P26-8220-64

Interaction of options parameters

RDML processing

If a CICS transaction issues RDMLs, the first RDML must be an RDML
sign-on (either implicit or explicit), which in turn issues a PDML SINON.
This means that every RDM transaction is one of the PDM tasks. The
limit on RDM CICS tasks is the CVOOPTM RDMUSR# parameter. The
maximum value of RDMUSR# is CSTXOPRM minus any task
requirements for non-RDM tasks. However, if RDMUSR# is greater than
TASKS, the number of signed-on RDM transactions can never reach its
maximum of RDMUSR#. Thus, if RDMUSR# is less than TASKS and the
number of signed-on RDM transactions reaches RDMUSR#, the next
transaction to issue an RDML sign-on will receive a failure status due to
insufficient resources to service the request. And if RDMUSR# is greater
than TASKS and the number of signed-on RDM transactions reaches
TASKS, the next transaction to issue an RDML sign-on will receive a
failure status due to a PDM CFUL status.

Each RDM task triggers the allocation of stack storage from CICS DSA
below the 16 MB line. A stack exists until the task signs off RDM or
detaches, at which time the stack storage is released to CICS DSA.
Since the limit on concurrent RDM transactions is controlled by the CICS
parameter AMXT (CICS 3.3 and below) or MXT (CICS 4 and above), this
number is also the limit on the number of stacks that can be allocated at
the same time. Stack size is controlled by the C$VOOPTM STACKSZ
parameter. A value of STACKSZ=32K should be sufficient for most
environments.

During RDM initialization, several RDM storage areas (heaps) are
allocated from virtual storage below or above the 16 MB line. The
C$VOOPTM HEAP# parameter determines the number of heaps, the
C$VOOPTM HEAPSZ parameter determines the size of each heap, and
the C3VOOPTM GETMAIN parameter determines the location above or
below the line. The heaps remain allocated throughout the CICS
execution.

NOTE The value GETMAIN=A is available only if you purchase an extra-cost
5 m— option. Please contact your Cincom representative for more information.

RDM Administration Guide 233

Chapter 9 Configuring the RDM for your environment

When a transaction issues an RDML sign-on, RDM assigns a heap to
that transaction. The heap remains assigned to that transaction until it
issues an RDML sign-off or terminates abnormally, at which time RDM
releases the heap, making it available to other RDM transactions. When
a signed-on RDM transaction opens a logical view, RDM builds the
context areas for the open view in that transaction’s heap. When CICS
passes control to an RDM transaction, it must have both a stack and a
heap available to it. If the RDM transaction is conversational, the end of
the transaction triggers an RDML sign-off (if the application code has not
already issued one), and the stack and heap are released. But if the
RDM transaction is pseudoconversational, a task within the application
can end without issuing an RDML sign-off. In that case, RDM manages
the stack and heap differently. As explained above, the stack is simply
freed, but pseudoconversational transactions must be able to access
their views in each task making up the application. So a view opened in
one task of a pseudoconversation may still be open in later tasks of the
application. For this reason, the contents of an RDM application’s heap
must be available to all tasks making up the application. RDM preserves
the contents of the heap for the next task in the application. There must
therefore be as many heaps as signed-on RDM applications, which can
be as high as the C8VOOPTM RDMUSR# value.

It is not always practical to allocate this many heaps. You can conserve
storage by setting HEAP# less than RDMUSR# but there is a
performance trade-off in doing so. When you set these two parameters
this way, RDM writes heaps out to CICS temporary storage and reads
them back in, so that active, executing RDM transactions can share the
heaps. (This I/O is referred to as heap roll-out and roll-in.) When a task
within an RDM pseudoconversational application ends, RDM can
reassign its heap to another RDM transaction that signs on or resumes.
First the heap is rolled out, then it is reassigned to the new transaction. If
this transaction is resuming, its heap is then rolled in.

234 P26-8220-64

Interaction of options parameters

PDM thread processing

A PDM thread is allocated to a CICS task in the process of having a
PDML serviced, so you should set THREADS no higher than TASKS in a
given CICS interface. If your CICS has a very high transaction rate, you
might observe frequent TFUL statuses. To resolve this problem, you
should increase the CSTXOPRM THREADS value. While a PDML is
being serviced on behalf of a PDM task, its active CICS task is in use.
The limit on the number of concurrent CICS active tasks is the DFHSIT
AMXT (or MXT) value. Therefore, CSTXOPRM THREADS should not be
less than AMXT (or MXT). If you set THREADS less than AMXT (or
MXT) and the number of PDMLs being concurrently serviced in that CICS
reaches the THREADS value, the next PDML attempted fails with a
TFUL status. Similarly, since each active RDM task requires a thread,
you should not set HEAP# less than the value of THREADS. If you do,
then once the number of active RDM tasks reaches HEAP#, the next
task attempting an RDML or resuming fails, due to insufficient resources
for service.

RDM Administration Guide 235

Chapter 9 Configuring the RDM for your environment

CICS processing

When any CICS transaction requests a CICS service, the CICS
dispatcher can suspend the transaction if the overall CICS load is heavy.
Suspension is unlikely to occur in a pseudoconversational application,
since its tasks terminate often, which frees their threads. But a
conversational transaction retains its active CICS task throughout the life
of the transaction, so long as it is active. Therefore, if all active CICS
tasks are allocated, suspension of a conversational transaction is more
likely.

A suspended transaction remains signed on to CICS, although it loses its
active CICS task while it is suspended. If the suspended transaction is a
PDM task, the PDM maintains this transaction as a signed-on task. If the
suspension occurs at a PDML, PDM keeps the suspended transaction’s
PDM thread active as well, even though its active CICS task has been
lost. The PDM thread remains active for the duration of the suspension
and afterwards until the PDML completes, at which time the PDM thread
is freed. If another PDM task in that CICS issues a PDML during the
suspension, it is possible that CICS will require more active PDM threads
than the DFHSIT AMXT (or MXT) value.

You should therefore set CSTXOPRM THREADS slightly higher than
DFHSIT AMXT (or MXT), to allow for task suspension. Typically,
AMXT+1 = THREADS or AMXT+2 = THREADS works well. But if your
CICS has a very high transaction rate, you might observe frequent TFUL
statuses. To resolve this problem, increase the CSTXOPRM THREADS
value.

CICS limits

The limit CICS imposes on the number of concurrently active and
executing transactions is the DFHSIT AMXT (or MXT) value. If all of
these are RDM transactions, this means that C$VOOPTM RDMUSR#
should not be less than DFHSIT AMXT (or MXT). If you set RDMUSR#
less than AMXT (or MXT) and the number of active, executing RDM
transactions reaches RDMUSR#, the next new or resuming RDM
transaction that attempts an RDML will receive a failure status due to
insufficient resources for servicing the RDML.

236 P26-8220-64

A

Customizing the RDM processing with
user exits

Overview of customizing the RDM processing with user exits

Several exits are available to RDM users. These exits allow you to insert
processing routines before and after database or RDML calls and to
perform validation checking. You can use the database exits and RDML
exits to bypass database or RDML calls, to perform your own database or
user file calls, or to satisfy any special requirements for your system. You
can use the validation exits to perform complex validation logic.

This appendix describes the following types of RDM user exits:

¢ “Using database exits” on page 240 describes the database exits:
environment-independent and environment-dependent variations of
the function exit and the status exit.

¢ “Using RDML exits” on page 249 describes the RDML exits: the
before-function exit and the after-function exit.

¢ “Using validation exits” on page 256 describes validation exits.

The following figure illustrates the location and control flow of the RDM
exit points. In the following explanation, a number in parentheses refers
to the corresponding number in the diagram. If you do not provide an exit
interface at an exit point, processing continues as though that exit point
does not exist.

RDM Administration Guide 237

Appendix A Customizing the RDM processing with user exits

238

Application

!

Call to RDM

CSVXBFOR

if RDM not called

RDM

Call to PDM

CSVXFUNC

if PDM not called

CSVXOFNC

CSVXCFNC

if PDM not called

PDM

Application
CSVXAFTR 6.
RDM

CSVXSTAT 5.

CSVXOSTA

4.
CSVXCSTA
P26-8220-64

Overview of customizing the RDM processing with user exits

Order of events during call to RDM:

1.
2.

10.

11.
12.
13.
14.

RDM Administration Guide

Application issues RDML command.
Control passes to CSVXBFOR (1) and invokes exit interface.

If CSVXBFOR denies access to the RDM, then control passes to
CSVXAFTR (see Step 13), else control passes to the RDM.

The RDM issues a call to the PDM.
Control passes to CSVXFUNC (2) and invokes exit interface.

If CSVXFUNC denies access to the PDM, then control passes to
CSVXSTAT (see Step 11), or else control passes directly to one of
the exit points listed in Step 7.

Control passes to one of the following environment-dependent exit
points:

For CICS -- CSVXCFNC (3)
For batch -- CSVXCOFNC (3)

If CSVXCFNC or CSVXOFNC denies access to the PDM, then
control passes to one of the environment-dependent exit points listed
in Step 10, or else control passes to the PDM.

The PDM passes control back to the RDM.

Control passes to one of the following environment-dependent exit
points:

For CICS -- CSVXCSTA (4)
For batch -- CSVXOSTA (4)

Control passes to CSVXSTAT (5) and invokes exit interface.
Control passes to the RDM.
Control passes to CSVXAFTR (6) and invokes exit interface.

Control passes back to the application.

239

Appendix A Customizing the RDM processing with user exits

The following table shows RDM user exit programs and the addressing
mode in which receive control in a CICS environment:

Module Addressing mode

CSVXAFTR 24-bit mode

CSVXBFOR 24-bit mode

CSVXCFNC Same addressing mode as the
invoking user application

CSVXCSTA Same addressing mode as the
invoking user application

CSVXFUNC 24-bit mode

CSVXSTAT 24-bit mode

CSVXCVXT 24-bit mode or 31-bit mode*

* If CSVXCVXT is link edited with CSVNPLVS, the exit receives control in
31-bit mode. If CSVXCVXT is not linked with CSVNPLVS, it receives
control in 24-bit mode (via a CICS command level LINK).

Using database exits

Use the database exits to insert routines at the RDM processing level,
which is environment-independent, and/or at the physical data manager
(PDM) call processing level, which is environment-dependent. The
following figure illustrates the processing flow of the four database exits.
The available database exits and their associated names are:

| Environment- independent batch

Environment-

Exits independent Batch CICS
Function CSVXFUNC CSVXOFNC CSVXCFNC
Status CSVXSTAT CSVXOSTA CSVXCSTA
240 P26-8220-64

Using database exits

User-Exit
Processing

Set Function
Return Code

Goto
Function
Exit

Set Function
Return Code
to Process

Process Function Exit

PDM Call?,

Call PDM

User-Exit
Processing

. Set Status
Status Exit Return Code Set Status

Return Code
to Process

Process Status Exit

Status?

Diagnose
Status

Continue
RDM —@
Processing

RDM Administration Guide 241

Appendix A Customizing the RDM processing with user exits

Using environment-independent database exits

You must always link edit the environment-independent exits
(CSVXFUNC and CSVXSTAT) with the RDM run-time processor prior to
program execution. The system provides default exits that give the
parameter list back to RDM unchanged, meaning to go ahead and
process normally. You can write these exits in Assembler, FORTRAN, or
COBOL. The contents of the general purpose registers on entry to the
exit program are as follows:

Register Contents

1 Points to the address list of the function request
parameters.
13 Contains the address of the standard register save

area. You must save and restore all registers that your
routine might alter.

14 Contains the standard branch return register address
for return to the RDM run-time processor from your exit
routine.

15 Contains the address of the user exit. You may use

this register to initialize the user exit base register.

242 P26-8220-64

Register 1

Using database exits

Using the function exit (CSVXFUNC)

Use the CSVXFUNC exit to analyze and modify, or bypass, the operation
of the physical data manager (PDM). RDM calls CSVXFUNC just before
calling the PDM with a physical data manipulation language (DML)
function request. Upon entry to CSVXFUNC, register 1 points to an
address list of the physical DML function’s parameters (see the following
figure). The system provides a null exit which gives the parameter list
back to RDM unchanged, meaning to go ahead and process. You can
code this exit to do your own unsupported file structure processing. A
return code of 1 causes RDM to skip the PDM call. RDM proceeds to call
the PDM if the return code has any value other than 1. Prior to entry, the
RDM run-time processor initializes STATUS to **** and SKIPDBMS to 0.

If you do not bypass the PDM call, you may not alter the FUNC
parameter. You may, however, modify any of the other parameters. Itis
possible to do your own file access, change the data areas, set a return
code of 1 in SKIPDBMS, return to the run-time processor, and RDM
would bypass the PDM call. If you do, you must set a PDM status code if
an error occurs, or leave it as **** if no error occurs, since the run-time
processor checks the status to see whether the PDM was called or not.
You may use your own 4-character status code. This would be recorded
on the console log, and the standard PDM error message would be
passed to the application message area. Or, you may use PDM status
codes, which RDM would intercept.

Addr 1

Addr2 | Addr3 | Addr4 | Addr5 | Addr6 | Addr7 | Addr8 | Addr9 | Addr 10

Addrl FUNC 5-byte function

Addr2 STATUS 4-byte status code

Addr3 FILE 4-byte filename

Addr4 REFER 4-byte reference parameter or variable length qualifier
Addr5 LINK 8-byte linkpath name

Addr6 KEY Variable length control-key

Addr7 LIST Variable length element-list

Addr8 DATA Variable length data area

Addr9 MODE 4-byte parameter list delimiter

Addrl0 SKIPDBMS 4-byte return code (binary fullword)
1 — skip PDM call
All other values — do not skip PDM call

RDM Administration Guide 243

Appendix A Customizing the RDM processing with user exits

Register 1

Using the status exit (CSVXSTAT)

Use the CSVXSTAT exit to analyze the return status from a physical data
manager (PDM) function call and to take appropriate action when the
PDM returns an unsuccessful status. Upon entry to the exit program,
register 1 points to an address list of the physical data manipulation
language (DML) function request parameters (see the following figure).
The system provides a null exit which gives the parameter list back to
RDM unchanged, meaning to go ahead and process normally. You can
code this exit to cause RDM to bypass the status code check and try the
PDM call again. A return code of 1 indicates that you want RDM to call
the PDM again with the same function. Any other value indicates RDM
should not repeat the PDM call but continue processing. RDM does not
alter any of the parameter values before calling the exit.

Within this exit, you can interrogate the status that was returned either
from the function exit (CSVXFUNC) or from the normal PDM call. You
can also examine the data and send a return code to RDM depending on
the results. A repeat of the PDM call also invokes the CSVXFUNC exit.
Therefore, if you have coded the CSVXFUNC exit, it executes again if
you set LOOP to 1.

Addr 1

Addr2 | Addr3 | Addr4 | Addr5 | Addr6 | Addr7 | Addr8 | Addr9 | Addr 10

244

Addrl FUNC 5-byte function

Addr2 STATUS 4-byte status code

Addr3 FILE 4-byte filename

Addr4 REFER 4-byte reference parameter or variable length qualifier
Addr5 LINK 8-byte linkpath name

Addr6 KEY Variable length control-key

Addr7 LIST Variable length element-list

Addr8 DATA Variable length data area

Addr9 MODE 4-byte parameter list delimiter (RLSE or END.)

Addrl0 SKIPDBMS 1-byte return code (binary fullword)
1 — skip PDM call
All other values — do not skip PDM call

P26-8220-64

Using database exits

Using environment-dependent database exits

The RDM environment-dependent run-time interface module uses weak
external references to the environment-dependent exits. These exits are
optional. Use them cautiously and only when necessary. The system
provides null exits, but only in source code for use as examples.

You can write these exits only in assembler language because the
register conventions are nonstandard. Contents of the general purpose
registers on entry to the exit program are as follows:

Batch CICs
Register CSVXOFNC/CSVXOSTA |CSVXCFNC/CSVXCSTA
11 Parameter list Parameter list
12 - EIB
13 - EISTG
14 Return address Return address
15 Exit entry point Exit entry point

RDM Administration Guide

245

Appendix A Customizing the RDM processing with user exits

RDM supplies no register save area to the exits. The RDM restores its
registers when the exit returns control to it. The parameter list (pointed to
by register 11) consists of a list of three addresses:

Register 11

Addrl Addr2 Addr3

The three addresses are as follows:

1. The address of the physical data manager request parameters
address list. This list of addresses is variable in length according to
the physical data manager request to be processed.

2. The address of the exit return code.

3. The address of a 256-byte work area available to the exit. In a
multitasking environment (CICS), the contents of the work area
remain unchanged from one physical data manager call to the next
until the application issues an RDM SIGN-ON or SIGN-OFF
command. However, the address of the work area may change from
call to call; therefore, do not store any addresses that point to the
work area. A SIGN-ON or SIGN-OFF command initializes the work
area to binary zeros. Note this work area is also passed to the
validation exit.

246 P26-8220-64

RDM Administration Guide

Using database exits

You must link your environment-dependent exits with the appropriate
RDM interface modules or phases as follows:

Under OS/390:

To link CSVXOFNC and/or CSVXOSTA with batch RDM:
Insert an INCLUDE statement for each exit in the link deck
CSVIBINT. Put the INCLUDE(s) for your exit(s) anywhere
after the INCLUDE for module CSVIVSCI and before the
NAME statement. Then use this link deck to relink the
module CSVIBINT.

To link CSVXCFNC and/or CSVXCSTA with online RDM:
Insert an INCLUDE statement for each exit in the link deck
CSVNPLVS. Put the INCLUDE(s) for your exit(s)
immediately before the ENTRY statement. Then use this link
deck to relink the module CSVNPLVS.

To link CSVXOFNC and/or CSVXOSTA with batch DBAID:
Insert an INCLUDE statement for each exit in the link deck
CSVIBDBA. Put the INCLUDE(S) for your exit(s) anywhere
before the ENTRY statement. Then use this link deck to
relink the module CSVIBDBA.

Under VSE:

To link CSVXOFNC and/or CSVXOSTA with batch RDM:
Insert an INCLUDE statement for each exit in the link deck
CSVJBINT on the relocateable library. Put the INCLUDE(S)
for your exit(s) anywhere after the PHASE statement and
before the ENTRY statement. Then use this link deck to
relink the phase CSVJBINT.

To link CSVYXCFNC and/or CSVXCSTA with online RDM:
Insert an INCLUDE statement for each exit in the link deck
for CSVNPLVS. Put the INCLUDE(s) for your exit(s)
immediately before the ENTRY statement. Then use this link
deck to relink the phase CSVNPLVS.

To link CSVYXOFNC and/or CSVXOSTA with batch DBAID:
Insert an INCLUDE statement for each exit in the link deck
CSVJIBDBA on the relocateable library. Put the INCLUDE(S)
for your exit(s) anywhere after the PHASE statement and
before the ENTRY statement. Then use this link deck to
relink the phase CSVJBDBA.

247

Appendix A Customizing the RDM processing with user exits

248

Your SUPRA Server job control language (JCL) library or source
statement library contains a sample JCL member named TXJLINK for
link editing Cincom software. Samples are subject to change. See the
SUPRA Server JCL library or source statement library member
TXJISINDX for a list showing this and other JCL samples.

os/39o|

See the SUPRA Server macro library or source statement library
member TX$IINDX for a list of link decks. See the SUPRA Server macro
library or source statement library member TX$$INDX for a list of
different kinds of samples.

Using the function exit (CSVXOFNC or CSVXCFNC)

RDM invokes the environment-dependent function exit after the
environment-independent function exit (CSVXFUNC; see “Using the
function exit (CSVXFUNC)” on page 243) and before the physical data
manager (PDM) call processing. Use the function exit to analyze and
modify (or bypass) the operation of the PDM call. You can code this exit
to do your own unsupported file structure processing. RDM skips the
PDM call if the exit returns a value of 1 in SKIPDBMS; RDM proceeds to
call the PDM if the exit returns any value other than 1. RDM initializes
SKIPDBMS to 0 before calling the exit.

Using the status exit (CSVXOSTA or CSVXCSTA)

RDM invokes the environment-dependent status exit after physical data
manager (PDM) processing and before the environment-independent
status exit (CSVXSTAT,; see “Using the status exit (CSVXSTAT)” on
page 244). Use the status exit to analyze the status returned from a
PDM call and to take the appropriate action. You can also use this exit to
return to the PDM and retry an unsuccessful request. A return code
(LOOP) of 1 indicates that you should repeat the PDM function. Any
other value means that you should not repeat the PDM call but continue
processing.

P26-8220-64

Using RDML exits

Using RDML exits

The CSVXBFOR and CSVXAFTR exits were created so you can analyze,
modify, or bypass the operation of RDM. RDM invokes CSVXBFOR
before performing any RDM function, and invokes CSVXAFTR after
performing any RDM function. These exits allow you to bypass normal
sign-on and sign-off procedures and to perform any other functions.

All RDML exits are entered in 24-bit addressing mode (AMODE=24).
Your exit code must switch to 31-bit addressing mode if your exit issues
commands that require 31-bit addressing capability. If your exit switches
to 31-bit addressing mode, it must switch back to 24-bit mode before
returning to RDM.

Under VSE/ESA, the AMODE considerations are the same as for
0OS/390/XA or OS/390/ESA. Under VSE/SP, all exits are entered in
AMODE-24. AMODE-31 is not available to VSE/SP.

The system provides default exits which give the parameter list back to
RDM unchanged, indicating RDM should process normally. You may
write these exits in Assembler, FORTRAN, or COBOL. Contents of the
general purpose registers on entry to the exit program are as follows:

Register |Contents

1 Points to the address list of the RDM function request
parameters.

13 Contains the address of the standard register save area.
You must save and restore all registers that your routine
might alter.

14 Contains the standard branch return register address for
return to the RDM run-time processor from your exit
routine.

15 Contains the address of the user exit. Use this register
to initialize the user exit base register.

RDM Administration Guide 249

Appendix A Customizing the RDM processing with user exits

250

Using the before-function exit (CSVXBFOR)

Use the CSVXBFOR exit to analyze and modify, or bypass, the operation
of RDM. RDM invokes CSVXBFOR just before performing any RDM
function. Upon entry to the exit program, register 1 points to an address
list of the RDM function request parameters (see the following figure).

Register 1

Addrl Addr2 Addr3 Addr4 Addr5

Y
Addrl CONTROL

Addr2 DATA
Addr3 SELECT
Addr4 LIST

Addr5 SKIPDML

SKIPDML is the return code for the exit. RDM sets SKIPDML to 0 before
calling the exit. If the exit sets SKIPDML to 1, RDM skips processing of
the RDM function. However, RDM still calls the CSVXAFTR exit. If
SKIPDML has any other value than 1, RDM processes the function and
then calls the CSVXAFTR exit.

If you let RDM process the function, you may not alter the operation field
in the TIS-CONTROL-AREA. You may, however, modify any of the other
parameters. You can use this exit to perform additional sign-on and
sign-off security checks and to monitor the activity of a particular file or
view.

Because RDM used previous positioning information, use care if you
intend to change any of the parameters passed to RDM for positioning
information.

The release tape provides a default CSVXBFOR exit. It sets SKIPDML
to 0 and does not modify any other parameters. It is linked by default
with RDM. The source of the default exit is in the MACLIB member
CSVXBFOR.

P26-8220-64

Using RDML exits

The contents of the parameters depend on the RDM command. If the
command is GET, UPDATE, INSERT, DELETE, MARK, or RELEASE,
the contents are the following:

Address

CONTROL TIS-CONTROL-AREA (see the DSECT C$VTISCN
for the contents).

DATA User view data area as described by the INCLUDE
statement for the view-name.

SELECT Time-date stamp (Do not modify).

LIST User view attribute data.

SKIPDML 4-byte return code (binary fullword integer).

1—Skip the RDML function.
Any other value—Do not skip the RDM function.

If the command is SIGN-ON, SIGN-OFF, FORGET, COMMIT, RESET,
or NO-OP, the contents are the following:

Address

CONTROL TIS-CONTROL-AREA (see the DSECT C$VTISCN
for the contents).

DATA TIS-CONTROL-AREA.
SELECT TIS-CONTROL-AREA.
LIST TIS-CONTROL-AREA
SKIPDML 4-byte return code (binary fullword integer):

1—Skip the RDM function.
Any other value—Do not skip the RDM function.

RDM Administration Guide 251

Appendix A Customizing the RDM processing with user exits

252

Using the after-function exit (CSVXAFTR)

Use the CSVXAFTR exit to analyze the return status from an RDM
function call and to take appropriate action when an unsuccessful status
is returned. Upon entry, register 1 points to an address list of the RDM
function request parameters (see the following figure) which contains the
values set by the CSVXBFOR exit and RDM'’s processing of the request.

LOOPDML is the return code for the exit. RDM sets LOOPDML to 0
before calling the exit. If the exit sets LOOPDML to 1, RDM repeats the
processing of the RDML function. This processing includes calling the
CSVXBFOR exit again. If LOOPDML has any value other than 1, RDM
returns to the program that issued the RDM function.

The release tape provides a default CSVXAFTR exit. It sets LOOPDML
to 0 and does not modify any other parameter. It is linked by default with
RDM. The source of the default exit is in the MACLIB member
CSVXAFTR.

Register 1

Addrl Addr2 Addr3 Addr4 Addr5

Addrl CONTROL

Addr2 DATA
Addr3 SELECT
Addr4 LIST

Addr5 LOOPDML

P26-8220-64

Using RDML exits

The contents of the parameters depend on the RDM command. If the
command is GET, UPDATE, INSERT, DELETE, MARK, or RELEASE,
the contents are the following:

Address

CONTROL TIS-CONTROL-AREA (see the DSECT C$VTISCN
for the contents).

DATA User view data area as described by the INCLUDE
statement for the view-name.

SELECT Time-date stamp (Do not modify).

LIST User view attribute data.

LOOPDML 4-byte return code (binary fullword integer):
1—Skip the RDM function.
Any other value—Do not skip the RDM function.

If the RDM command is SIGN-ON, SIGN-OFF, FORGET, COMMIT,
RESET, or NO-OP, the contents are the following:

Address

CONTROL TIS-CONTROL-AREA (see the DSECT C$VTISCN
for the contents).

DATA TIS-CONTROL-AREA.
SELECT TIS-CONTROL-AREA.
LIST TIS-CONTROL-AREA.

LOOPDML 4-byte return code (binary fullword integer):
1—Execute this RDM function again.
Any other value—Continue processing and return to
the program that issued the RDM function.

RDM Administration Guide 253

Appendix A Customizing the RDM processing with user exits

254

Using the TASKID exit (CSVXTSID)

Use the CSVXTSID exit to analyze and modify, or bypass a task ID which
is attempting to access RDM. RDM invokes CSVXTSID before
performing any RDM function. Upon entry to the exit program, register 1
points to an address list of the RDM function request parameters. The
return code from this exit is not tested by RDM.

Register 1
[
Addr 1 Addr 2 Addr 3 Addr 4 | Addr 5-8 Parm 9 | Addr 10
/
Addr 1 Reserved for future use. Do not modify.
Addr 2 Reserved for future use. Do not modify.
Addr 3 Address of the CICS DFHEIB (EXEC Interface) control
block for this task. Do not modify.
Addr 4 Address of the CICS DFHEISTG (EXEC Interface
Storage) control block for this task. Do not modify.
Addr 5-8 Reserved for future use. Do not modify.

Parameter 9 Task ID in the following format:
byte 1 =T (terminal task)
bytes 2-5 = Contents of the EIBTRMID field
bytes 6-8 = Reserved

Addr 10 Reserved for future use. Do not modify.

NOTE

This exit is called only when processing a terminal task.

P26-8220-64

Using RDML exits

The CSVXTSID exit is called via a BALR R14, R15 instruction. General
purpose register contents are:

RO

R1

R3-12

R13

R14

R15

Unpredictable

Parameter list

Unpredictable

Standard 18 fullword save area
Return address in RDM

Entry point of CSVXTSID

You must restore registers to their original contents before returning
control to RDM.

RDM Administration Guide

255

Appendix A Customizing the RDM processing with user exits

Using validation exits

RDM supports validation exits that allow the DBA to write more complex
validation logic than is available using range checking or validation tables.
See “Validation options” on page 41 for information on how RDM
performs validation checking such as range, table, and validation exits.

You define a validation exit in the Directory using the Physical Field entity.
Refer to the SUPRA Server PDM Directory Online User’s Guide (OS/390
& VSE), P26-1260, or the SUPRA Server PDM Directory Batch User’s
Guide (0S/390 & VSE), P26-1261, for information on defining validation
options for a physical field. To specify the validation exit, enter E in the
VALIDATION OPTION field of the Physical Field entity. Specify the exit
name in the VALIDATION EXIT field.

See the example listings at the end of this section for sample code used
to switch to 24-bit or 31-bit mode.

For more information on the addressing mode for RDML exits, see
“Using RDML exits” on page 249.You can specify many different
validation exit names in the Directory. However, for a particular
environment, RDM collects all validation exits into one validation exit
module. The validation exit module names and register conventions are:

Module name

0S/390 & VSE batch CSVXIVXT [0S/390 & VSE CICS CSVXCVXT

Register 1

Register 11
Register 12
Register 13
Register 14
Register 15

Parameter list Parameter list

- EIB

- EISTG

Return address Exit module entry

Exit module entry point -

256

The batch validation exit module, CSVXIVXT, is a separate load module.
It is loaded dynamically the first time a view is opened that uses a
physical field that specifies a validation exit. No register save area is
provided. RDM saves and restores its registers. The return address is
provided in register 14.

P26-8220-64

You

Using validation exits

can link the CICS Validation Exit module with the CSVNPLVS load

module by adding an INCLUDE to the CSVNPLVS link deck for your exit
program. It will be called by BALR 14,15 instruction and receive control
in 31-bit mode.

Alte

rnatively, the CICS Validation Exit module can be a separate load

module. This requires that you add an entry for the exit program to the
PPT. In this case, the Validation Exit receives control in 24-bit
addressing mode. Normal CICS linkage conventions apply. The exit
module must return by using a CICS RETURN statement.

Sample validation exit modules are supplied with RDM. Use them as
starting points for developing your own exits. The parameter list contains
twelve addresses, as follows:

Register 1
or Register 11

Addrl

Addr2

Addr3 Addr4 Addr5 Addré Addr7 Addr8 Addr9 Addr10 Addr11 Addr12

RDM Administration Guide

Address of a 256-byte work area available to the exit. This is the
same work area provided to the environment-dependent database
exits. The contents of the work area remain unchanged from one
call of an exit to the next. However, an RDML SIGN-ON or
SIGN-OFF command initializes the work area to binary zeroes. The
address of the work area may change from one exit call to the next;
therefore, do not store any address that points to the work area.

Address of the return code. The return code is a 4-byte binary
integer. The values the validation exit sets are:

-1 Invalid or unsupported validation exit name
0 Valid value or valid exit name
1 Invalid value

Address of the 8-character exit name. This is the exit name specified
in the Physical Field entity on the Directory. If the exit name is invalid
or not supported, the exit module sets the return code to -1.

Address of the 30-character user name. The user nhame provided on
the RDML SIGN-ON command.

257

Appendix A Customizing the RDM processing with user exits

258

5.

10.

11.

12.

Address of the 30-character view name. The name of the view that
contains the column being validated.

Address of the 30-character column name.

Address of the value to be validated. The length and format of this
field varies.

Address of the 1-character type of the value:
Character

Packed

Binary

C

P

Z Zoned
B

F Floating Point
K

Kaniji
Address of the length of the value. The length is a 4-byte binary
integer.
Address of the 1-character signed flag for the value:
Y The value is signed.

N The value is not signed.

Address of the number of decimals in the value. The number is a
4-byte binary integer.

Address of the 1-character operation type. This field indicates the
type of RDML request that caused the call of the validation exit:

G GET RDML
I INSERT RDML
U UPDATE RDML

O Open of the view. A value is not passed. Exit module should
only validate the exit name. The validation exit should not
change any parameters except for the return code. RDM calls
the validation exit for each column in the view that requires a
validation exit. For update requests, only columns that have
been changed are validated.

P26-8220-64

Using validation exits

When using derived views, the first view to see the data calls the
validation process. That is, for GET RDML base view processing calls
the validation process. For UPDATE and GET, the derived view
processing calls the validation process.

Whenever RDM opens a view requiring validation exits, RDM calls the
validation exit module to verify that it supports the exit name. If the
validation exit module cannot support the exit name, it should set a -1
return code. If during an OPEN, RDM receives a -1 return code or it
cannot load or find the validation exit module, RDM returns a function
status indicator (FSI) indicating a fatal error and a message indicating the
exit name for a column is invalid. If CSVXCVXT is link edited with
CSVNPLVS, the Validation Exit receives control in 31-bit mode. Your exit
code must switch to 24-bit mode if it issues commands that require 24-bit
addressing capability. If your exit code switches to 24-bit mode, it must
switch back to 31-bit mode before returning to RDM.

If CSVXCVXT is not linked with CSVNPLVS, it receives control in 24-bit
mode via a CICS command level LINK. Your exit code must switch to
31-bit mode if it issues commands that require 31-bit addressing
capability. If your exit code switches to 31-bit mode, it must switch back
to 24-bit mode before returning to RDM.

The following code listing shows an example of code to switch to 24-bit
addressing mode and then back to the original addressing mode. To
switch from 24-bit mode to 31-bit mode and back, see the sample code
shown in the next code listing.

L X

CCDE TO SWTCH TO AMCDE- 24

o e R X

LA R9, LABELY SETUP FOR RETURN TO ORI G NAL

LA R14, LABELX SETUP FOR SW TCH TO AMODE- 24

BSM R9, R14 CHANGE TO AMODE- 24, SAVE AMODE

DC H 0 (NEVER W LL BE EXECUTED)
LABELX DS OH

Your existing code which nust execute in AMODE-24 is here.

L R R X

CCODE TO RESTORE AMODE

L R X

BSM 0, R9 RESTORE AMCDE
DC H 0 (NEVER W LL BE EXECUTED)
LABELY DS OH

RDM Administration Guide 259

Appendix A Customizing the RDM processing with user exits

260

The following code listing shows an example of code to switch from the
current addressing mode to 31-bit mode, and then to restore to the
original addressing mode. To switch to 24-bit mode and back, see the
sample code shown in the preceding listing.

BEG N

*
ST™M
L

LA

BSM

DS
LABEL1
BEG N31

*kkkk k%

ST

code that

RETURN
L
L
BSM
LABEL2
L
LM
BR
SAVEMODE

DS OH

R14, R12, 12(R13) SAVE THE CALLERS REG STERS

R10, LABEL1 ESTABLI SH PERVANENT BASE,
SET AMODE 31 BIT

R12, LABEL2 GET ADDRESS OF EXIT PO NT
R12, R10 SAVE CALLER S AMODE, SET TO 31
OF ALI GNMVENT

DC A(BEG N31+X' 80000000')

DS OH

NOWVIN 31 BIT MODE SO WE CAN MANI PULATE EXTENDED CSA
R12, SAVEMODE SAVE MODE REG STER

runs in 31-bit node goes here ...

DS OH

R12, SAVEMODE RESTORE MODE REGQ STER

R13, 4(, R13) RESTORE ORI G NAL SAVE AREA
0, R12 RESET CALLER S AMODE

DS OH

R14, 12(, R13) RESTORE RETURN ADDRESS

RO, R12, 20(R13) RESTORE CALLER S REQ STERS

R14 RETURN WTH RC I N R15

DS F MODE REG STER SAVE AREA

NOTE

Although the parameters in the parameter list passed to the user exits
are in 24-bit addressable storage, the parameter list may contain
addresses that are in 31-bit storage.

P26-8220-64

B

Setting the online RDM options with
macr os

Overview of setting the online RDM options with macros

Set or revise your online RDM options for OS/390 or VSE with the
C$VOOPTM macro. Choose the parameter values for the options you
want. Your SUPRA Server macro library contains the options module
CSVOOPTM (0S/390) or CSVDOPTM.A (VSE) which invokes the macro
C$VOOPTM. Code the parameters you choose in the options module
CSVOOPTM or CSVDOPTM.A (or a copy). Assemble and link the
options module as the module CSVOOPTM. Online RDM loads the
module. For VSE, the Assembler output is CSVDOPTM.OBJ.

Your SUPRA Server job control language (JCL) library contains a sample
member named TXJVOPTM for assembling and linking CSVOOPTM.
Samples are subject to change. See the SUPRA Server JCL library
member TXJ$INDX for a list showing this and other JCL samples. See
the SUPRA Server Macro library member TX$$INDX for a list of different
kinds of samples (UCLCODE, JCL, etc.). Refer to the SUPRA Server
PDM and Directory Administration Guide (0S/390 & VSE), P26-2250, for
more information on JCL samples.

RDM Administration Guide 261

Appendix B Setting the online RDM options with macros

262

=

O ' '
DASMTIME = §723'59'59 |
B hh.mm.ss

0 K
OBLKSIZE = %
g nnK
0 0
cics=
jcies= Lo

O
qCTNXNS= 2
] %nnnn@

g NY
GETMAIN=
: SELowE.

. [2M ul
QGLOBSIZ= thnM
g FnnnnnkE
O

CHEAP#= 2 [T

g8 %nnm

O

THEAPSZ = 2K

g Q;nnnK

o 241
OIMSRDMP = N
g8 H;I’IHED

0 65536 O
IMSSMPL =

: Snnnnnn

O

IMSSMPX = (024000075

g nnnnnn g

C$VOOPTM SrgmpaTe= 393:09.01
gyy.mm.dd'

;

P26-8220-64

Overview of setting the online RDM options with macros

0 FCSGOPTNS X
OIMSSPCO = %

g XXXXXXX

JIMSSPOL = %415] X
B NCH

0 _ LVo0m X
EPFILE— W%

DRDMUSR# % % X
O

ORPTSIZE = ZK% X
5 nK

O

OSTACKSZ = gﬂ% X
g nK

0 oY O

HsYNCTYP= N X
0 [l

. R

SSYSTEM— FOS % X
H EOS

O

OTCISIZE = ZK% X
5 nK

0

OTSLvP= FEVSH X
g XXX M|

O

OTSROLL = %% X
B

RDM Administration Guide 263

Appendix B Setting the online RDM options with macros

ASMDATE = 93.09.01'
yy.mm.dd 5

Description Optional. Specifies the Assembly Date stamp for the generated options

table.
Default '93.09.01'
Format 6 numeric characters delimited by periods and enclosed in single

guotation marks.
Considerations

¢ 0S/390 users can code ASMDATE = &SYSDATE to obtain the
current system date.

¢ VSE users must code the current date value manually if they wish to

accurately timestamp the resultant options table generation. The
VSE Assembler does not support the global value &SYSDATE.

ASMTIME = 23.59.59' 7
hh.mm.ss'g

Description Optional. Specifies the Assembly Time stamp for the generated options

table.
Default '23.59.59'
Format 6 numeric characters delimited by periods and enclosed in single

guotation marks.
Considerations

¢ 0S/390 users can code ASMTIME = &SYSTIME to obtain the current
system time.

¢ VSE users must code the current time value manually if they wish to

accurately timestamp the resultant options table generation. The
VSE Assembler does not support the global value &SYSTIME.

264 P26-8220-64

Overview of setting the online RDM options with macros

'BLKSIZE= %K .
nnKH

Description Optional. Indicates the block size (physical record size) of the heap roll

area.
Default 4K
Options 4K-28K

Considerations
¢ The block size must be a multiple of 4K.
¢ The block size should be as close as possible to the maximum track
size of your physical device without exceeding it. For IBM 3390 disk
devices, Cincom recommends a block size of 28K.

¢ The heap size is rounded up to be a multiple of the block size.

'Clcs:gli_gsg

Description Optional. Indicates whether RDM is running under CICS.
Default NO
Considerations

¢ If you are running under CICS, you must code CICS=YES.

¢ If you are running under IMS/DC, you must code CICS=NO or let it
default to NO.

,CTNXNS = %

O

nnnn%

Restriction This parameter is ignored unless you are running SPECTRA under CICS.
Description Optional. Specifies the number of heaps for use by SPECTRA.

Default 5

Options 1-32767

RDM Administration Guide 265

Appendix B Setting the online RDM options with macros

NY g

,GETMAIN=
ELOWH

Description Optional. Specifies whether to use memory below the 16 MB line for
RDM heaps and global views.
Default ANY

Options ANY Allocate RDM heaps and global views using the LOC=ANY
option of the IBM macro GETMAIN. In practice, this implies
they are allocated above the 16 MB line.

BELOW Allocate RDM heaps and global views below the 16 MB line.

oM O
GLOBSIZ= Fanm F
HhnnnnkE

Description Optional. Specifies the size of the memory area for storing global views.

Default 2M
Format 1-5 numeric characters followed by K, or 1-2 numeric characters
followed by M

Considerations

¢ Under CICS, if you set this parameter to zero, RDM will allocate NO
global view memory and WILL NOT initialize a global view area. If
you want to have a global view area, you MUST enter a non-zero
value for this parameter or leave the default value of 2 MB.

¢ If you allocate global views below the 16 MB line by coding
GETMAIN=BELOW, you must specify a global view area size that fits
below the line in your address space. The default size will almost
certainly be too large.

266 P26-8220-64

Overview of setting the online RDM options with macros

_ b 0
JHEAP#= a;nnnng

Description Optional. Specifies the number of heaps to be allocated.
Default 5

Options 1-32767

Considerations

¢ HEAP# controls the concurrency of tasks. RDMUSR# controls the
maximum number of tasks allowed to sign on to RDM.

¢ If HEAP# is less than RDMUSR#, rolling of pseudoconversational
task context will occur when the number of tasks signed on to RDM
exceeds HEAP#.

¢+ If HEAP# is equal to RDMUSR#, no rolling of pseudoconversational
task context will occur.

¢+ If HEAP# is greater than RDMUSR#, you are wasting space. In this
situation, heaps will be allocated but never used, because RDMUSR#
limits the number of tasks allowed to sign on to RDM.

- BB2K g
HEAPSZ = gﬁnKH

Description Optional. Specifies the size of the heaps to be allocated.

Default 32K The default options module distributed with SUPRA Server
specifies a HEAPSZ of 64K.

Options 4K-1020K
Considerations

¢ This size must be at least as large as the size specified by the
BLKSIZE parameter.

¢ The heap size is rounded up to be a multiple of the block size.

RDM Administration Guide 267

Appendix B Setting the online RDM options with macros

_ @410
JIMSRDMP = %‘H

Description

Default

Format

Optional. Specifies the number of the memory subpool where RDM work
space is allocated.

241

3 numeric characters

Considerations

¢ If you are running under CICS, Cincom recommends you code
IMSRDMP=0.

¢ The memory subpool number specified by this parameter must be
the same as that specified by the IMSSPOL parameter.

IMSSMPL = %ﬁ?ﬁmn%
Restriction This parameter is ignored unless you are using SPECTRA under CICS.
Description Optional. Specifies the standard memory pool size, in bytes, for
SPECTRA system memory.
Default 65536
Format 1-7 numeric characters
IMSSMPX = D].024000OS
nnnnnnp
Restriction This parameter is ignored unless you are using SPECTRA under CICS.
Description Optional. Specifies the maximum total amount of memory, in bytes,
allowed for SPECTRA system memory.
Default 1024000
Format 7 numeric characters

268

Consideration

¢ Cincom recommends you allow this value to default to 1024000.

P26-8220-64

Overview of setting the online RDM options with macros

_ %SGOPTNSQ
,IMSSPCO = SXXXXXX E
Restriction This parameter is ignored unless you are using SPECTRA under CICS.

Description Optional. Specifies the name of the SPECTRA options module
(assembled using the macro C3GOPTNS).

Default CSGOPTNS

Format 1-8 alphanumeric characters or @, #, $; first character must be
alphabetic or @, #, $

_ @410
JIMSSPOL = %‘S

Description Optional. Specifies the number of the memory subpool where SPECTRA
work space is allocated.

Default 241
Format 1-3 numeric characters

Considerations
¢ Cincom recommends you always code IMSSPOL=0.

¢ This field in the control block is accessed only by the memory
manager utility CSVOCSA.

¢ The memory subpool number specified by this parameter must be
the same as that specified by the IMSRDMP parameter.

RDM Administration Guide 269

Appendix B Setting the online RDM options with macros

[LVOODO
O

,PFILE=
XX

Restriction This parameter is ignored unless you are using SPECTRA under CICS.

Description Optional. Specifies the name of the SPECTRA Personal File.

Default LV00
Format 4 alphanumeric characters or @, #, $; first character must be alphabetic
or@,#$
53) O
,RDMUSR# = % 0
nnnng

Restriction This parameter is ignored under IMS/DC.

Description Optional. Specifies the maximum number of concurrent active RDM

users.
Default 5
Format 1-5 numeric characters (1-32767)

Considerations

¢+ If RDMUSR# exceeds HEAP#, heap storage is rolled to temporary
auxiliary storage (for pseudoconversational tasks).

¢ If the number of users attempting to use RDM exceeds RDMUSR#,
functional status indicators of “I” (insufficient resources) will be
returned.

¢ RDMUSR# is used internally by RDM CICS XA support to build a
table which determines how many heaps can be accessed.

¢ RDM allocates a stack only for the life of an RDML command (a
stack will be allocated at the beginning of an RDML command and
freed at the end of that command).

NOTE See also the considerations listed under the HEAP# parameter in this
section, since these two parameters work in unison.

270 P26-8220-64

Overview of setting the online RDM options with macros

2K

,RPTSIZE =
nK

[T

Description Optional. Indicates the amount of memory in the RPT table to be used
for DBAID utility requests.

Options 4K-31K

,STACKSZ = éK g
nKH

Description Optional. Specifies the size of the stacks to be allocated.
Default 16K

Format 1-2 numeric characters followed by K
Considerations
¢ This size must not be smaller than 16K or larger than 63K.

¢ One heap and one stack comprise one slot.

Y0
SYNCTYP= HNE

R
Description Optional. Specifies the type of sync point performed by RDM.
Options Y Full sync point/rollback
N No sync pointing

R Commit sync point; no rollback

S g
SYSTEM = %
osH

Description Required. Specifies the operating system type in which RDM will be

used.
Default (O]
Options OS RDMis used in an OS/390/XA or OS/390/ESA system.

DOS RDM is used in a VSE/SP or VSE/ESA system.

RDM Administration Guide 271

Appendix B Setting the online RDM options with macros

,TCISIZE = 2K g
an
Description

Format

Consideration

Optional. Specifies the Control Interval size for the temporary storage file
on auxiliary storage.

1-2 numeric characters followed by K

This value must be the same as the Control Interval size you specify for
your VSAM auxiliary file.

(PLVSO

,TSLVP= W%

Restriction
Description
Default

Format

Consideration

This parameter is ignored except under CICS.
Optional. Specifies the prefix of the CICS temporary storage identifier.
PLVS

4 alphanumeric characters or @, #, $; first character must be alphabetic
or@,# 9%

¢ Cincom recommends you allow this value to default to PLVS.

,TSROLL = %E

Description

Options

272

Optional. Specifies the type of temporary storage destination for RDM
heap rollout/roll-in.

A Roll heaps to auxiliary storage

M Roll heaps to virtual main storage above the 16 MB line

P26-8220-64

| ndex

A

Access
Definition 72
Definitions 64
keyed 33
order of 64
Access Key,and logical key 33
Access methods, impact of
positional relationships 55
Access set, and view binding 125
ACCESS statement, in view
access definition 32, 72
After-function exit, RDML 252
ALL keyword, in ALLOW clause
49
ALL parameter, for DBAID
commands
in BIND command 140
in delete command 153
in UNDEFINE command 203
ALLOW clause
for maintenance 49
in access definition 75
Environment description 122
Application program, RDM
reporting on 223
statistics gathering in 129
Application programmers
and RDM 19
and views 25
Application tasks, types
supported 128
Application, RDM
currentness of 115
linking and executing 226
ASI. See Automatic System
Initialization and Column
Status Indicator (ASI)
AT clause, in DBAID commands
in GET command 162
in MARK command 178

RDM Administration Guide

AT CLAUSE, in DBAID
commands
in GO command 164
Automatic
COMMIT 199
disabling 145
hold 162
Automatic RESET, disabling 172
Automatic System Initialization
(ASI) 127

B

Base relations, examples of 76
Base view 20, 24, 29
creating 29
DBAID 63
DBAID and 24
DBAID sample session 106
defining 29
Directory Maintenance and 25,
63
examples 78
generating with Directory
Maintenance 63
global 122
integrity and 87
opening 85
relating to users 130
sources for derived views 64
Batch RDM, and global views
122
Before-function exit, RDML 250
BIND command
an COMMIT command 149
and RESET command 192
and view binding 125
example 141
syntax 140
BIND parameter, in SAVE
command 193
Binding views 125
Blank, as validation option 40
BOUND parameter, in BIND
command 140
Bound views 125
Built-in view commands, in
DBAID 138
BYE command
and SIGN-OFF command 197
and STATS-OFF command 200
and STATS-ON command 201
and view binding 125
syntax 142

273

Index

C

C$VOOPTM macro 261
format 261
parameters 264
Cascade delete 53
and integrity 97
CAUTIOUS command
and COMMIT command 149
syntax 145
Change
logical 115
physical 115
to files 115
Characters per line, displaying
175
CICs
and global views 122
and recovery 132
processing 236
Cincom Software Selection
Screen 105
COBOL Programmers’ Report
215
Column
defining 64
redundant
in view column definition 68
joins and 43
required 31
required, designating 39
Column definition
examples 71
syntax 64
Column description, displaying
146, 158
Column list, displaying 207
Column name
displaying 143
in COLUMN-DEFN command
146
in COLUMN-TEXT command
146
in view column definition 67
unigueness 66
Column parameter
in OPEN command 180
in UPDATE command 204

Column Status Indicator (ASI) 58

Column values, shared 54

274

COLUMN-DEFN command
example 147
syntax 146
Commands
built-in view commands 138
DBAID 133
editing commands 136
example 148
format 135
list 136
reissuing 139
Relational Data Manipulation
language (RDML)
commands 137
statistics commands 138
syntax 148
system commands 136
COMMIT, DBAID command 132
Commits
automatic 199
BIND command 141
CAUTIOUS command 145
DENY command 155
PERMIT command 183
REMOVE command 189
RESET command 192
SAVE command 193
Compound nonunique key 38
Compound unique key 37
Concatenated key 37
Conceptual schema 24
CONST keyword 39
CONST option, in column
definition 39, 66
Context file, RDM 225
Control-key, on PDM file 33
COPY command
example 151
syntax 150
Core-image library 129
CSVLVRES. See RDM, modules
CSVNVRES. See RDM, modules
Currentness of program 115
Currentness of view bindings,
checking 120

P26-8220-64

D

Data retrieval, with RDM 55
Data storage areas 226
Data validation, automatic 19
Database
changing contents of 49
IMS
RDM access 23
navigation 55
penetration 56
sample of 50
updating 201
Database user exits, RDM 240
DBA (Database Adminstrator),
function in RDM 27
DBA Report
and view binding 126
described 213
DBA, function in RDM 27
DBAID utility
base views 24
command categories 134
command format 134
commands
built-in view commands 138
non-DBA users 104
RDML 137
statistics 138
system 136
commands list 136
DBA and 27
editing commands 136
examples, online 105
positional parameters 133
signing on 105
uses for 24, 104
view definition with 63
DECLARE clause, on RDM
Programmers' Report 215
Default validation 42
Default values 20
for physical fields 47
DEFINE
and EDIT command 156
and LINE-NUMBER command
174
and LIST command 177
and SAVE command 193
and UNDEFINE command 203
in sample DBAID session 111
syntax 152

RDM Administration Guide

Index

Delete

cascade delete 97

column status indicators (ASIs)
60

integrity 89

nullify delete 97

nulls and 45

restrict delete 97

DELETE command

example 154
syntax 153

DENY command 130

and COMMIT command 149
and RESET command 192
syntax 155

Derived view 20, 29

application programmer and 26

building 29

customizing 31

defining 64

defining in sample DBAID
session 111

examples of 80

external schema and 25

global 122

maintenance restrictions 31

prototyping 25

relating to users 130

required columns in 70

size recommended 31

sources of derived views 64

SPECTRA users 25

tailoring 64

testing with DBAID 25, 31, 104

Derived views

processing 85

Directory Maintenance

and base views 24

for defining global views 122

for view definition 63

Directory reports 211

Directory, and RDM 27, 41

DMLPRINT file 184

Domain checking, overriding 67

Domain information, and
NORMAL 40

Domains 40

DTB (Dynamic Transaction

Backout) 132

275

Index

E

EDIT
and DEFINE command 152
and LINE-NUMBER command
174
and LIST command 177
and SAVE command 193
and UNDEFINE command 203
Editing commands, in DBAID 136
End User Report 218
and view binding 126
END. keyword, with MASS
parameter 169
Environment description
parameters 230
Equal sign, in domain checking
43
ERASE command, syntax 157
Exit
after-function 252
before-function 250
database exits 238
function exit
environment-dependent 245
environment-independent 240
processing flow 237
purpose 237
RDML exits 249
status exit
environment-dependent 245
environment-independent 242
task ID 254
types 237
validation exits 256
option specifying 40
Exit from DBAID 142
in sample DBAID session 114
External schema 25

F

FIELD-DEFN
syntax 158

FIELD-DEFN command
example 158

FIELD-TEXT command 148

File changes 117

File structures 19, 24
and external schema 25
physical changes report 220
RDM context 225

276

FIRST parameter
in GET command 161
in GO command 164
in INSERT command 168
FKEY
and derived views 90
and insertion integrity 90
and update integrity 90
FOR parameter, in GO command
164
FOR UPDATE parameter, in GET
command 162
Foreign key 52
and deletion integrity 96
defined 87
defining 90
nullifying 96
redundant, with GET
processing 95
value integrity 90
FORGET
syntax 160
FORGET, and MARK command
178
FROM parameter, in GO
command 164
FSI. See Function Status
Indicator (FSI)
Function exit 243, 248
in sample DBAID session 105
Function Status Indicator (FSI)
59
for foreign key on rejected
insert 91
for foreign key on rejected
update 93

G

GENERATE, and base views 29
GET command
and DELETE command 153
and UPDATE command 205
examples 161
in sample DBAID session 111
syntax 161
GET processing
and integrity 95
and null values 44
and validation 44
GETVIS area, RDM loaded in
126

P26-8220-64

GIVING clause, in Access
Definition 74
Global view area 122
definition and example 122
in memory 123, 228, 266
performance optimization 122
GO command 137
examples 167
in sample DBAID session 110,
114
syntax 164

H

Hardware requirements for RDM
28
Heaps
allocation of 228
defined 226
number, specifying 265, 267
size, specifying 265

Impact of Change Report 220
IMS database
RDM access 23
recovery and 132
IMS/DC, global view support 122
Index
and unbound views 117
as access method 55, 57
deletion integrity 96
INSERT command 137
automatic 51
examples 170
in DBAID session 112
reject 51
syntax 168
INSERT processing 86
and null values 45
and validation 45
integrity 91
Integrity 25
and base views 29
and cascade delete 97
and foreign key value 89, 90
and GET processing 95
and nullify delete 97
and restrict delete 97

RDM Administration Guide

Index

centralizing 31
database 19, 24
delete 53, 89, 96
example used in ACCESS
statement 51
examples of 97
insertion 91
maintaining 87
rules for 89
update 93
Internal schema 23

J

JCL samples, RDM in SUPRA
Server libraries 134, 211,
225, 248, 261

Join compatibility 43

K

KEEP command, syntax 172
Key
access with 33
compound nonunique 38
compound unique 37
concatenated 37
constant 33
control-key, PDM file 33
nonunique 33, 38
primary
defined 87
integrity 91
simple nonunique 38
simple unique 36
unique 33
Key, qualifier in view definition 65
Keyed access 33
KSDS VSAM files 23
and recovery 132

L

LAST parameter
in GET command 161
in GO command 164
in INSERT command 168
Level of occurrence, and BY-
LEVEL command 143

277

Index

Line-number command
and DEFINE command 152
and EDIT command 156
and LIST command 174
example 174
syntax 173
Line-number parameter, in line-
number command 173
LINESIZE command
syntax 175
Link decks
for RDM interface 248
for RDM resident module 126
RDM samples in SUPRA
Server libraries 248
Linkpath area (LPA)
for performance optimization
126
installing RDM in 126
Linkpaths, unbound views 116
LIST
and DEFINE command 152
and EDIT command 156
and LINE-NUMBER command
174
and OPEN command 181
and REMOVE command 189
and SAVE command 193
and UNDEFINE command 203
syntax 176
Lock 162
Logical design, changing 116
Logical key
and access key 33
example 33
number in view 33
order of 64
with fixed values 39
Logical unit of work 149

M

Macro, C8VOOPTM 261
Maintenance restrictions, and
derived views 31
MARK command
and FORGET command 160
and RELEASE command 188
syntax 178
Mark-name parameter, in
FORGET command 160

278

MARKS command
example 179
syntax 179

MASS parameter, in INSERT

command 169

Memory
DBAID requirements 181
DBAID, conserving 178
extended 126, 225, 266
freeing 160, 203
global views and 122, 266
shared 126

Modifying a view definitions
in sample DBAID session 114

Modules, for RDM 227

N

Navigation
boundaries 57
constraints 57
database 55
NEXT parameter
for GET command 161
for GO command 164
for INSERT command 168
Nonunique key 33, 38
NONUNIQUE KEY, qualifier in
view column definition 65
NORMAL
base views and 24, 29
DBA and 27
domains and 40
Null value(s) 19
column 44
COLUMN-DEFN command and
40
constant value and 70
GET processing and 95
insertion integrity and 87
integrity and 89
KEY qualifier for view column
definition and 64
MASS parameter for DBAID
commands and 169
update integrity and 93
validation of 42, 45
Nullify delete 53
integrity and 97

P26-8220-64

Number-of-characters parameter,
for DBAID command
LINESIZE 175

Number-of-lines parameter, for
DBAID command
PAGESIZE 182

O

ONCE clause, in view access
definition 72
Online DBAID session, sample
105
OPEN
LIST command and 181
OPEN command
syntax 180
OPEN, DBAID command
in sample DBAID session 106
UNDEFINE command and 203
OPEN, DBAID command
example 181
OPER CONNECT
parameters 232
process 231
Operating systems
OS/390/ESA 225, 261
OS/390/XA 225, 261
OS/390/ESA 225, 261
OS/390/XA 225, 261

P

Packed decimal fields validation
42
PAGESIZE, DBAID command,
syntax 182
Password parameter, for DBAID
command SIGN-ON 198
Pause job 128
PDM. See Physical Data
Manager (PDM)
Penetration
access method 55
PERMIT
COMMIT command and 149
DBAID command 132
DENY command and 155
RESET command and 192
syntax 183

RDM Administration Guide

Index

Physical Data Manager (PDM)
file(s)
RDM access 23
recovery 132
required for RDM 28
thread processing 235
Physical design, changing 117
Physical file, keyed access 33
Physical key 33, 35
Picture clause, on RDM
Programmers' Report 215
PL/1 Programmers' Report 215
Position, current, marking 178
Precompilers, RDML 21, 225
Primary key
defined 87
deletion integrity and 96
insertion integrity and 91
update integrity and 93
PRINT-STATS
DBAID command 128
example 184
STATS-ON command and 201
syntax 184
PRIOR parameter
for DBAID commands 134
for GET command 161
for GO command 164
for INSERT command 168
Procedure samples, RDM, in
SUPRA Server libraries
134, 211, 225
Processing time, displaying 205
Program changes, determining
impact of 115
Programmers' Report
described 215
Programmers’ Report
view binding and 125
Public user 185
PUBLIC-DENY, DBAID
command
PUBLIC-PERMIT command
and 185
syntax 185
PUBLIC-PERMIT, DBAID
command
Directory Maintenance RELATE
function and 186
syntax 186

279

Index

PUBLIC-VIEWS, DBAID
command
syntax 187
VIEWS-FOR-USER command
and 210

R

Range checking 41
RDM (Relational Data Manager)
benefits of 19
Directory and 40
installing in linkpath area (LPA)
126
installing in shared virtual area
(SVA) 126
linking 261
maintaining 113
modules
interface modules, linking
exits with 247
list 227
resident module, moving to
shared memory 126
online options, OS/390,
specifying 261
reports, and stored views 29
samples, in SUPRA Server
libraries 211, 225, 248, 261
security 25
RDML. See Relational Data
Manipulation Language
(RDML)
Rebinding views 115, 117, 120
Recompile 115, 120
Records
recovery 132
Records, operations on. See Get,
Insert, Update, and/or
Delete
Redundant columns in view
column definition 68
joins and 43
Referential integrity examples 99
maintaining 87
rules 89
RELATE
DBAID command PUBLIC-
PERMIT and 186
function of Directory
Maintenance 132

280

Relational Data Manager. See
RDM
Relational Data Manipulation
Language (RDML) 19
DBAID commands 137
exits 249
precompilers 21, 225
processing 233
verbs. See Get, Insert, Update,
and/or Delete
Relational operators 19
Relationships
creating 156
removing 132, 185
RELEASE
DBAID command 188
in sample DBAID session 114
LIST command and 177
OPEN command and 181
syntax 188
REMOVE
COMMIT command and 149
DBAID command 132
RENUMBER, DBAID command,
syntax 191
Reports
DBA and 27
RDM 25, 211
types of 211
REQ
effect on processing 65
foreign key and 90
get processing and 95
qualifier in view column
definition 65
REQ qualifier and 39
Required column
CONST qualifier and 39
null value and 45
Required columns
designating 34
RESET
DBAID command 132
syntax 192
RESET command
view binding and 125
RESET command and
syntax 192

P26-8220-64

Reset(s)
automatic, disabling 172
BIND command and 141
DENY command 155
ERASE command and 157
PERMIT command and 183
REMOVE command and 189
SAVE command and 193
Restart of task, during recovery
132
Restrict delete 53
integrity and 97
Retrieval of rows (records)
by penetration 164
by sweeping 164
Retrieval of rows (records). See
Get
Retrieval validation flag 41, 44
Rollback 190
during recovery 132
Row(s)
how RDM constructs 32
operations on. See Get, Insert,
Update, and/or Delete

S

SAME parameter
for DBAID commands 134
for GET command 161
for GO command 164
Samples, RDM, in SUPRA
Server libraries 211, 225,
248, 261
SAVE
BYE command and 142
COMMIT command and 149
DBAID command 193
EDIT command and 156
examples 194
LIST command and 177
RESET command and 194
syntax 193
view binding and 193
Schema name
BIND command in 140
COPY command and 150
EDIT command, in 156
LIST command 176
LIST command, security in 176
REMOVE command and 189
SAVE command in 193

RDM Administration Guide

Index

Schema(s)
conceptual 24
external 25
internal 23
Secondary key(s), unbound
views and 116
Security
assigned on user basis 132
base views and 29
constant key and 39
controlling 39
DENY command and 155
derived views and 39
imposing on derived views 64
of database 21
PERMIT command and 183
RDM 26
Selection criteria, in view access
definition 74
Shared column values 54
Shared virtual area (SVA)
installing RDM in
installation procedure 127
optimizing performance 127
SHOW-NAVIGATION
DBAID command 195
example 195
syntax 195
SIGN-OFF
BYE command and 142
DBAID command 197
syntax 197
SIGN-ON, DBAID command
example 198
syntax 198
Simple nonunique key 38
Simple unigue key 36
Slot(s)
size
global views and 124
MARK command and 178
specifying 267
Slots
defined 225
Software Selection Screen 105
Source file. See Source relation
Source relation
defined 87
deletion integrity and 96
integrity and 89
nullify delete and 97
update integrity and 93

281

Index

SPECTRA
user, views and 26
views and 21
Stack(s)
allocation of 228
defined 225
number, specifying 267
size, specifying 267
Statistics
BYE command and 142
commands, in DBAID 138
disabling 200
displaying on terminal 199
examples of 129
gathering 128, 201
interpreting 128
printing 184, 201
RDM 129
SIGN-OFF command and 197
STATS
DBAID command 128
example 199
STATS-ON command and 201
syntax 199
STATS-OFF
DBAID command 128
PRINT-STATS command and
184
STATS command and 200
syntax 200, 201
STATS-ON
DBAID command 128
PRINT-STATS command and
184
STATS command and 201
STATS-OFF command and 201
Status
indicators 58
Status exits 248
Status exits, RDM 244
Storage
configuring 228
freeing 160, 188, 203
SURE, DBAID command, syntax
202
SVA. See Shared virtual area
Sweep
as access method 55, 57
get requests 164
System commands, in DBAID
135

282

T

Table checking 42
Tabular data structure 19
Target file. See Target relation
Target relation
defined 87
integrity and 89
nullify delet and 97
update integrity and 93
Task abend, recovery and 132
Task level recovery (TLR) 132
RESET command and 192
Task restart, during recovery 132
TASKID exit, RDML 254
Text, displaying for column 148
Thread, processing 235
Three-schema architecture 25
TIS-CONTROL-AREA, statistics
gathering and 129
TIS-OPTIONS file, statistics
gathering and 129
TLR. See Task level recovery
Transaction level recovery (TLR).
See Task level recovery
Two-schema architecture 24

U

UNDEFINE, DBAID command
203
DEFINE command and 152
LIST command and 177
syntax 203
view binding and 125
Unique key 35
UPDATE
DBAID command 204
example 204
in sample DBAID session 113
syntax 204
UPDATE keyword
in view access definition 49, 52,
75
Update(s)
anomalies, avoiding 31
committing 149
reject 52
User name parameter
for DENY command 155
for PERMIT command 183

P26-8220-64

User view(s)
defined 21
displaying 207
memory required for 123
name, parameter, for OPEN
command 180
User(s), number, specifying 270
USER-LIST, DBAID command
example 207
syntax 207
User-to-view relationships,
security and 26
USING parameter, for DBAID
commands
for GET command 163
for GO commands 166

\%

Validation
criteria for derived view 31
during get processing 44
during insert processing 44, 51
during update processing 44,
51
exits 256
option specifying 41
information, COLUMN-DEFN
command and 40
of defaults 42
options 41
packed and zoned decimal
fields 42
table, on the Directory 42
Validity Status Indicator (VSI) 58
in sample DBAID session 106
Validity Status Indicators (VSI) 62
VARIABLE EDIT, Directory
Maintenance command, for
view definition 63
View definition(s) 64
changing, in sample DBAID
session 114
removing 189
storage of 25, 29
testing with DBAID 29

RDM Administration Guide

Index

text
displaying for *PUBLIC**
user 187
displaying for signed-on user
187
view binding 125
with view binding 125
View(s)
access 21, 64
and security 26
active, displaying 209
base. See Base view(s)
binding, for performance
optimization 125
bound 115
changes, determining impact of
115
closing 188
definition. See View
definition(s)
derived. See Derived view(s)
description, displaying 208
displaying 168
maintenance action for 21
name(s), access definition, in
72
opening 180
rebinding 115, 140, 141
relating to user(s) 130, 183,
186
removing 189
subsetting for user(s) 22
testing 104
unbound 115
unnormalized, and nonunique
keys 38
user. See User view(s)
virtual. See Virtual view(s)
VIEW-DEFN, DBAID command
example 208
syntax 208
Views
Impacting Programs Report
223
Impacting Views Report 222
Used by Programs Report 115,
224
VIEWS, DBAID command
example 209
syntax 209

283

Index

VIEWS-FOR-USER, DBAID
command
example 210
syntax 210
Virtual view(s)
COPY command in 151
DEFINE command in 152
effect of BYE command on 142
modifying 156
removing 203
renumbering 191
VSI. See Validity Status Indicator
(vsl)

284

W

WHERE clause, in view access
definition 74

4

Zoned decimal fields validation
42

P26-8220-64

	Back to DOCUMENTATION MENU
	About this book
	Using this document
	Document organization
	Revisions to this manual
	Conventions

	SUPRA Server documentation series

	Chapter 1 - Overview of the SUPRA Relational Data Manager
	The user’s perspective—views
	Accessing views
	Subsetting views

	The DBA's perspective—three-schema architecture
	Internal schema
	Conceptual schema—base views
	External schema—derived views
	RDM security

	The DBA function in the RDM
	System requirements
	Directory
	Physical Data Manager
	Hardware

	Chapter 2 - Accessing user data
	Overview of base views and derived views
	Designing derived views
	How the RDM constructs rows
	Providing keyed access
	Unique keys
	Simple unique keys
	Compound unique keys

	Nonunique keys
	Simple nonunique keys
	Compound nonunique keys

	Constant keys
	Required columns

	Using domains, null values, and default values for physical fields
	Validation options
	Range checking
	Table checking
	Exits
	Default validation
	Join compatibility
	GET processing
	INSERT processing
	UPDATE processing

	Null values
	GET processing
	INSERT processing
	UPDATE processing
	DELETE processing

	Default values

	Chapter 3 - Modifying user data
	Changing the database contents
	Inserting information to the database
	Updating information on the database
	Deleting information from the database
	Allowing shared column values

	Retrieving data with the RDM
	Database penetration
	Database sweep
	Indexing
	Navigational constraints and boundaries

	Status indicators
	Function status indicators
	Column status indicators
	Validity status indicators

	Chapter 4 - Defining and using derived views
	Defining derived views
	Column definition
	Access definition

	Examples of derived view definitions
	Base relations
	Base views
	Derived views

	Processing derived views
	Processing the GET command
	Processing the INSERT command

	Chapter 5 - Maintaining referential integrity
	Integrity rules and checking
	Foreign key value integrity
	Insertion integrity
	Update integrity
	GET processing
	Deletion integrity
	Cascade delete
	Restrict delete
	Nullify delete

	Referential integrity examples

	Chapter 6 - Maintaining the RDM
	Defining and testing views with DBAID
	Signing on to DBAID and RDM
	Defining base views
	Defining a derived view
	Retrieving records
	Inserting records
	Updating a row
	Modifying a view definition

	Maintaining current programs and views
	Checking currentness of program
	Checking currentness of view bindings

	Optimizing performance
	Global view support
	View binding
	Installing the RDM resident module in shared memory
	Installation in the LPA under OS/390/XA
	Installation in the SVA under VSE

	Gathering and interpreting statistics
	Gathering statistics with DBAID
	Gathering statistics in an application program
	Interpreting RDM statistics
	Statistics example

	Relating views to users
	Recovering data

	Chapter 7 - Managing views with the DBAID commands
	Introduction to DBAID
	System commands
	Editing commands
	RDML commands
	Built-in view commands
	Statistic commands

	= command
	BIND command
	BYE command
	BY-LEVEL command
	CAUTIOUS Command
	COLUMN-DEFN command
	COLUMN-TEXT command
	COMMIT command
	COPY command
	DEFINE command
	DELETE command
	DENY command
	EDIT command
	ERASE command
	FIELD-DEFN command
	FORGET command
	GET command
	GO command
	INSERT command
	KEEP command
	Line-number command
	LINESIZE command
	LIST command
	MARK command
	MARKS command
	OPEN command
	PAGESIZE command
	PERMIT command
	PRINT-STATS command
	PUBLIC-DENY command
	PUBLIC-PERMIT command
	PUBLIC-VIEWS command
	RELEASE command
	REMOVE command
	RENUMBER command
	RESET command
	SAVE command
	SHOW-NAVIGATION command
	SIGN-OFF command
	SIGN-ON command
	STATS command
	STATS-OFF command
	STATS-ON command
	SURE command
	UNDEFINE command
	UPDATE command
	USER-LIST command
	VIEW-DEFN command
	VIEWS command
	VIEWS-FOR-USER command

	Chapter 8 - Using the RDM reports
	DBA report
	Programmer’s report
	End user report
	Impact of change report
	Files impacting views report
	Views impacting views report
	Views impacting programs report

	Views used by programs report

	Chapter 9 - Configuring the RDM for your environment
	Overview of configuring the RDM for your environment
	Configuring the RDM XA storage
	Interaction of options parameters
	Environment description parameters
	The connect/sinon process
	OPER CONNECT parameters
	RDML processing
	PDM thread processing
	CICS processing
	CICS limits

	Appendix A - Customizing the RDM processing with user exits
	Overview of customizing the RDM processing with user exits
	Using database exits
	Using environment˚independent database exits
	Using the function exit (CSVXFUNC)
	Using the status exit (CSVXSTAT)

	Using environment˚dependent database exits
	Using the function exit (CSVXOFNC or CSVXCFNC)
	Using the status exit (CSVXOSTA or CSVXCSTA)

	Using RDML exits
	Using the before˚function exit (CSVXBFOR)
	Using the after˚function exit (CSVXAFTR)
	Using the TASKID exit (CSVXTSID)

	Using validation exits

	Appendix B - Setting the online RDM options with macros
	Overview of setting the online RDM options with macros

	Index

